923 resultados para Golgi signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During development, embryos must carefully integrate the processes of cell proliferation and differentiation. TH has been identified in Xenopus laevis as a gene product that functions in regulating differentiation of the neural ectoderm through its effect on cell proliferation. However, the mechanism and molecular pathway through which TH functions are not known. We identified the Xenopus FK506 binding protein homolog (XFKBP12) as a protein that interacted with TH in a yeast two-hybrid screen with TH as the bait. The direct and specific interaction between TH and XFKBP12 was supported by several tests including CO-IP, drug competence assay and mutagenesis analysis. To investigate the function of XFKBP12 during embryogenesis, we created an XFKBP12 loss of function embryo using antisense morpholino oligonucleotides (MO). XFKBP12 MO injected embryos displayed similar phenotypes as TH depleted embryos. We also demonstrated that both TH and XFKBP12 functioned through the TOR signaling pathway which is a target for cancer therapies. The interaction between TH and XFKBP 12 was required to regulate the proliferation of neural cells. Therefore, our study indicates that TH represents the endogenous ligand of XFKBP12 and together they coordinate neural cell proliferation and differentiation through the conserved rapamycin sensitive TOR pathway. Thus, understanding how this pathway functions in development will not only provide us important insights into the relationship between proliferation and differentiation, but help design rational cancer therapies targeting this pathway. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During early mouse neural development, bone morphogenetic protein (BMP) signaling patterns the dorsal neural tube and defines distinct neural progenitor cell domains along the dorsoventral axis. Unlike the ventral signaling molecule Sonic hedgehog, which has long-range activity by establishing a concentration gradient in the ventral neural tube, these dorsally expressed BMPs appear to have a limited domain of action. This raises questions as to how BMP activity is restricted locally and how restricted BMP signaling directs dorsal neural patterning and differentiation. I hypothesize that BMPs are restricted in the dorsal neural tube for correct dorsoventral patterning. ^ Previous studies have shown that the positively charged basic amino acids located at the N-terminus of several BMPs are essential for heparin binding and diffusion. This provides a novel tool to address these questions. Here I adapted a UAS/GAL4 bigenic mouse system to control the ectopic expression of BMP4 and a mutant form of BMP4 that lacks a subset of the N-terminal basic amino acids. The target genes, UAS-Bmp4 and UAS-mBmp4 , were introduced into the Hprt locus by gene targeting in mouse embryonic stem cells. The expression of the GAL4 transactivator was driven by a roof plate specific Wnt1 promoter. ^ The bigenic mouse embryos exhibit phenotype variations, ranging from mid/hindbrain defects, hemorrhage, and eye abnormalities to vasculture formation. Embryonic death starts around E11.5 because of severe hemorrhage. The different expression levels of the activated transgene may account for the phenotype variation. Further marker analysis reveals that mutant BMP4 induces ectopic expression of the dorsal markers MSX1/2 and PAX7 in the ventral neural tube. In addition, the expression of the ventral neural marker NKX2.2 is affected by the expanded BMP4 activity, indicating that ectopic BMP signaling can antagonize ventral signaling. Comparison of the phenotypes of the Wnt1/ Bmp4 and Wnt1/mBmp4 bigenic embryos that express transgenes at the same level, respectively, shows that mutant BMP4 causes the expansion of dorsal neural fates ventrally while wild type BMP4 does not, suggesting that mutant BMP4 acts farther than wild type BMP4. Together, these data suggest that the N-terminus basic amino acid core controls BMP4 long-range activity in neural development, and that BMP signaling patterns the dorsal neural tube through a secondary signaling pathway that involves homeodomain transcription factors MSX1/2 and PAX7. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of the vertebrate face is an extremely complex developmental process, which needs to coordinate the outgrowth of several facial primordia. Facial primordia are small buds made up of mesenchymal masses enclosed by an epithelial layer that surrounds the primitive mouth. The upper jaw is formed by the maxillary process, the lateral nasal process, and the frontonasal process while the mandibular process forms the lower jaw. Recent experiments using genetics in mice and bead implantation approaches have shown that the pitx2 homeobox gene and Bmp signaling play important roles in this complex developmental process. However, the molecular mechanisms underlying the function of pitx2 and Bmp in these events are still unclear. Here, we show that pitx2 is required for oral epithelium maintenance, and branchial arch signaling is pitx2 dosage sensitive by using pitx2 allelic combinations that encode varying levels of pitx2. Maintenance of fgf8 signaling requires only low pitx2 dosage while repression of Bmp signaling requires high pitx2 levels. Different incisor and molar phenotypes in low level pitx2 mutant embryos suggest a distinct requirement for pitx2 in tooth-type development. The results show that pitx2 is required for craniofacial muscle formation and expanded Bmp signaling results in excess bone formation in pitx2 mutant embryos. Fate-mapping studies show that ectopic bone results from excessive bone growth, instead of muscle transformation. Moreover, by using cre/loxp system we show that partial loss of Bmpr-IA in the facial primordia results in cleft lip/palate, abnormal teeth, ectopic teeth and tooth transformation. These phenotypes suggest that Bmp signaling has multiple functions during craniofacial development. The mutant palate shelves can fuse with each other when cultured in vitro, suggesting that cleft palate is secondary to the partial loss of Bmpr-IA. Furthermore, we prove that Bmp4, one of the ligands of Bmpr-IA, plays a role during lip fusion developmental process and partial loss of Bmp4 in the facial primordia results in the lip fusion delay. These results have provided insight to understand the complex signaling cascades that regulate craniofacial development. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heparan sulfate (HS)-fibroblast growth factor (FGF) signaling system is a ubiquitous regulator that senses local environmental changes and mediates cell-to-cell communication. This system consists of three mutually interactive components. These are regulatory polypeptides (FGF), FGF receptor (FGFR) and heparan sulfate proteoglycans (FGFRHS). All four FGFR genes are expressed in the adult liver. Expression of the FGFR1–3 genes is generally associated with non-parenchymal cells while expression of the FGFR4 gene is associated with parenchymal hepatocytes. We showed that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (−/−) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7α-hydroxylase (Cyp7a), the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. These results indicated that FGFR4 was not directly involved in liver growth but exerted negative control on liver bile acid synthesis. This was confirmed in transgenic mice overexpressing the constitutively active human FGFR4 in livers. The transgenic mice exhibited decreased fecal bile acid excretion, bile acid pool size, and expression of Cyp7a. Introduction of this constitutively active human FGFR4 into FGFR4 (−/−) mice restored the inhibition of bile acid synthesis. Activation of the c-Jun N-terminal Kinase (JNK) pathway by FGFR4 correlated with the repressive effect on bile acid synthesis. ^ To determine whether FGFR4 played a broader role in liver-specific metabolic function, we examined the impact of both acute and chronic exposure to CCl 4 in FGFR4 (−/−) mice. Following acute CCl4 exposure, the FGFR4 (−/−) mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair, with no apparent effect on liver cell proliferation and restoration of cellularity. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4 (−/−) mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8 hr delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl 4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. ^ Of the 23 FGF polypeptides, FGF1 and FGF2 are present at significant levels in the liver. To determine whether FGF1 and FGF2 played a role in CCl 4-induced liver injury and fibrosis, we examined the impact of both acute and chronic exposure to CCl4 in both wild-type and FGF1-FGF2 double-knockout mice. Following acute CCl4 exposure, FGF1(−/−)FGF2(−/−) mice exhibited accelerated liver injury, overall normal liver growth and repair, and decreased liver collagen α1(I) induction. Liver fibrosis resulting from chronic CCl4 exposure was markedly decreased in livers of FGF1(−/−)FGF2(−/−) mice compared to wild-type mice. This study suggests a role for FGF1 and FGF2 in hepatic fibrogenesis. ^ In summary, our three part study shows that specific components of the ubiquitous HS-FGF signaling family in the liver context interfaces with metabolite- and xenobiotic-controlled networks to regulate liver function, but has no apparent direct effect on liver cell growth. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-melanoma skin cancer is the most frequently diagnosed malignancy in the United States of which basal cell carcinoma (BCC) accounts for 65%. It has recently been determined that deregulation of the sonic hedgehog (shh) pathway leads to the development of BCC. Shh, gli-1, gli-2 gli-3, ptc and smo are overexpressed in BCC and overexpression of these genes in the epidermis results in formation of BCC-like tumors. Despite these observations, the mechanisms by which the pathway controls epidermal homeostasis and the development of the malignant phentotype are unknown. This study assessed the role of the shh pathway in epidermal homeostasis through regulation of apoptosis and differentiation. ^ The anti-apoptotic protein, bcl-2 is overexpressed in BCC, however transcriptional regulators of bcl-2 in the epidermis are unknown. Transient transfection of primary keratinocytes with gli-1 resulted in an increase of bcl-2 expression. Database analysis revealed seven candidate gli binding sites on the bcl-2 promoter. Cotransfection of increasing amounts of gli-1 in keratinoycytes resulted in a corresponding dose-dependent increase in bcl-2 promoter luciferase activity. An N-terminal mutant of gli-3 inhibited gli-1 transactivation of the bcl-2 promoter. The region −428 to −420 was found to be important for gli-1 regulation through gel shift, luciferase assays and site-directed mutagenesis. ^ In order to assess the ability of the shh pathway to regulate keratinocyte differentiation, HaCaT keratinocytes overexpressing sonic hedgehog, were grown in organotypic raft culture. Overexpression of shh induced a basal cell phenotype compared to vector control, as evidenced by transmural staining of cytokeratin 14 and altered Ki67 staining. Shh also induced keratinocyte invasion into the underlying collagen. This was associated with increased phosphorylation of EGFR, jnk and raf and increased expression of c-jun, mmp-9 and Ki67. Interestingly, shh overexpression in HaCaTs did not induce the typical downstream effects of shh signaling, suggesting a gli-independent mechanism. Sonic hedgehog's ability to induce an invasive phenotype was found to be dependent on activation of the EGF pathway as inhibition of EGFR activity with AG1478 and c-225 was able to reduce the invasiveness of HaCaT shh keratinocytes, whereas treatment with EGF augmented the invasiveness of the HaCaT shh clones. ^ These studies reveal the importance of the sonic hedgehog pathway in epidermal homeostasis by regulation of apoptosis through bcl-2, and control of keratinocyte differentiation and invasion through activation of the EGF pathway. They further suggest potential mechanisms by which deregulation of the shh pathway may lead to the development of the malignant phenotype. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metastasis, the major cause of morbidity and mortality in most cancers, is a highly organized and organ-selective process. The receptor tyrosine kinase HER2 enhances tumor metastasis, however, its role in homing to metastatic organs is poorly understood. The chemokine receptor CXCR4 has recently been shown to mediate the malignant cancer cells to specific organs. Here we show that HER2 enhances the expression of CXCR4 by increasing CXCR4 protein synthesis and inhibiting its degradation. We also observed significant correlation between HER2 and CXCR4 expression in human breast tumor tissues, and an association between CXCR4 expression and a poor overall survival rate in patients with breast cancer. Furthermore, we found that CXCR4 is required for HER2-induced invasion, migration, and adhesion activities in vitro . Finally we established stable transfectants using retroviral RNA interference to inhibit CXCR4 expression and showed that the CXCR4 is required for HER2-mediated lung metastasis in vivo. These results provide a plausible mechanism for HER2-mediated breast tumor metastasis and homing to metastatic organs, and establish a functional link between the receptor tyrosine kinase HER2 and the chemokine receptor CXCR4 signaling pathways. ^ The HER2 overexpression activates PI-3K/Akt pathways and plays an important role in mediating cell survival and tumor development. Hypoxia inducible factors (HIF) are the key regulator for angiogenesis and energy metabolism, and thereby enhance tumor growth and metastasis. HIF activation occurs in the majority of human cancers, including the HER2 overexpressing cancer cells. Previous reports suggested that increased PI-3K/Akt may activate HIF pathway in various tumors, but the detail mechanism is still not completely understood. Here we found that HER2/PI-3K/Akt pathway induces HIF-1α activation, which is independent of hypoxia, but relatively weaker than hypoxic stimulation. This phenomenon was further observed in Akt knock out mouse embryonic fibroblast cells. The PI-3K/Akt pathway does not affect HIF-1α binding with its E3 ligase VHL, but enhances the binding affinity between HIF-1α and β unit. Furthermore, we found Akt phosphorylates HIF-1β at serine 271 and further regulated HIF transcriptional activity. Our findings provided one mechanism that HER2 induce HIF activation via Akt to promote angiogenesis, and this process is independent on hypoxia, which may have implications in the oncogenic activity of HER2 and PI-3K/Akt pathway. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RC3, also known as neurogranin, is a small neuronal IQ domain protein whose only known function is to bind calmodulin (CaM). The hypothesis tested in this work was that RC3 alters the dynamics of the interaction of Ca 2+-CaM with CaM-kinase II, so that there is less CaM-kinase II activation for a given Ca2+ stimulus. To evaluate this hypothesis, we investigated the affinity and kinetics of the interactions of CaM with Ca 2+, RC3 and CaM-kinase II. We quantitated the interaction of the four CaM-kinase II isoforms with CaM and found that the KD for binding of CaM to CaM-kinase II ranged from 7 nM to 60 nM. Using stopped-flow fluorimetry, we determined the kinetics of the interaction of Ca2+-CaM with αCaM-kinase II, and found that the association rate constant is 2.1 × 10 M −1s−1 and the dissociation rate constant is 1.6 s−1. We investigated the effects of RC3 and αCaM-kinase II on the affinity of CaM for Ca2+ and found that both proteins alter the rate of dissociation of Ca2+ from CaM. RC3 increases the rate of dissociation of Ca2+ from the C-terminal binding sites of CaM from 9 s−1 to ∼500 s−1 , while αCaM-kinase II causes a decrease in the rate of dissociation from all four Ca2+ binding sites. Measurement of the rate of dissociation of Ca2+ from CaM in the presence of both RC3 and αCaM-kinase II revealed a role for RC3 in accelerating the dissociation of the Ca 2+-CaM-αCaM-kinase II complex at the end of a Ca2+ signal. We characterized the interaction of RC3 with apo-CaM and Ca 2+-CaM and found that the KD for both of these interactions is about 1 μM. We also directly tested whether RC3 slowed the dynamics of the binding of CaM to αCaM-kinase II and found that RC3 had no effect for large changes in Ca2+, and a modest effect for small changes in Ca2+ levels. Our overall conclusion is that the ability of RC3 to alter the interaction of Ca2+ with CaM allows RC3 to alter the dynamics of interaction of CaM with Ca2+-dependent targets such as CaM-kinase II. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ca2+-binding protein calmodulin (CaM) is a key transducer of Ca2+ oscillations by virtue of its ability to bind Ca 2+ selectively and then interact specifically with a large number of downstream enzymes and proteins. It remains unclear whether Ca2+ -dependent signaling alone can activate the full range of Ca 2+/CaM regulated processes or whether other regulatory schemes in the cell exist that allow specific targeting of CaM to subsets of Ca 2+/CaM binding sites or regions of the cell. Here we investigate the possibility that alterations of the availability of CaM may serve as a potential cellular mechanism for regulating the activation of CaM-dependent targets. By utilizing sensitive optical techniques with high spatial and temporal resolution, we examine the intracellular dynamics of CaM signaling at a resolution previously unattainable. After optimizing and characterizing both the optical methods and fluorescently labeled probes for intracellular measurements, the diffusion of CaM in the cytoplasm of HEK293 cells was analyzed. It was discovered that the diffusion characteristics of CaM are similar to that of a comparably sized inert molecule. Independent manipulation of experimental parameters, including increases in total concentrations of CaM and intracellular Ca2+ levels, did not change the diffusion of CaM in the cytoplasm. However, changes in diffusion were seen when the concentration of Ca2+/CaM-binding targets was increased in conjunction with elevated Ca2+. This indicates that CaM is not normally limiting for the activation of Ca 2+/CaM-dependent enzymes in HEK293 cells but reveals that the ratio of CaM to CaM-dependent targets is a potential mechanism for changing CaM availability. Next we considered whether cellular compartmentalization may act to regulate concentrations of available Ca2+/CaM in hippocampal neurons. We discovered changes in diffusion parameters of CaM under elevated Ca2+ conditions in the soma, neurite and nucleus which suggest that either the composition of cytoplasm is different in these compartments and/or they are composed of unique families of CaM-binding proteins. Finally, we return to the HEK293 cell and for the first time directly show the intracellular binding of CaM and CaMKII, an important target for CaM critical for neuronal function and plasticity. Furthermore, we analyzed the complex binding stoichiometry of this molecular interaction in the basal, activated and autophosphorylated states of CaMKII and determined the impact of this binding on CaM availability in the cell. Overall these results demonstrate that regulation of CaM availability is a viable cellular mechanism for regulating the output of CaM-dependent processes and that this process is tuned to the specific functional needs of a particular cell type and subcellular compartment. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic respiratory illnesses are a significant cause of morbidity and mortality, and acute changes in respiratory function often lead to hospitalization. Air pollution is known to exacerbate asthma, but the molecular mechanisms of this are poorly understood. The current studies were aimed at clarifying the roles of nerve subtypes and purinergic receptors in respiratory reflex responses following exposure to irritants. In C57Bl/6J female mice, inspired adenosine produced sensory irritation, shown to be mediated mostly by A-delta fibers. Secondly, the response to inhaled acetic acid was discovered to be dually influenced by C and A-delta fibers, as indicated by the observed effects of capsaicin pretreatment, which selectively destroys TRPV1-expressing fibers (mostly C fibers) and pretreatment with theophylline, a nonselective adenosine receptor antagonist. The responses to both adenosine and acetic acid were enhanced in the ovalbumin-allergic airway disease model, although the particular pathway altered is still unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are actively engaged in the production of cellular energy sources, generation of reactive oxygen species (ROS), and regulation of apoptosis. Mitochondrial DNA (mtDNA) mutations/deletions and other mitochondrial abnormalities have been implicated in many diseases, especially cancer. Despite this, the roles that these defects play in cancer development, drug sensitivity, and disease progression still remain to be elucidated. The major objective of this investigation was to evaluate the mechanistic relationship between mitochondrial defects and alterations in free radical generation and chemosensitivity in primary chronic lymphocytic leukemia (CLL) cells. This study revealed that the mtDNA mutation frequency and basal superoxide generation are both significantly higher in primary cells from CLL patients with a history of chemotherapy as compared to cells from their untreated counterparts. CLL cells from refractory patients tended to have high mutation frequencies. The data suggest that chemotherapy with DNA-damaging agents may cause mtDNA mutations, which are associated with increased ROS generation and reduced drug sensitivity. Subsequent analyses demonstrated that CLL cells contain significantly more mitochondria than normal lymphocytes. This abnormal accumulation of mitochondria was linked to increased expression of nuclear respiratory factor-1 and mitochondrial transcription factor A, two key free radical-regulated mitochondrial biogenesis factors. Further analysis showed that mitochondrial content may have therapeutic implications since patient cells with high mitochondrial mass display significantly reduced in vitro sensitivity to fludarabine, a frontline agent in CLL therapy. The reduced in vitro and in vivo sensitivity to fludarabine observed in CLL cells with mitochondrial defects highlights the need for novel therapeutic strategies for the treatment of refractory disease. Brefeldin A, an inhibitor of endoplasmic reticulum (ER) to Golgi protein transport that is being developed as an anticancer agent, effectively induces apoptosis in fludarabine-refractory CLL cells through a secretory stress-mediated mechanism involving intracellular sequestration of pro-survival secretory factors. Taken together, these data indicate that mitochondrial defects in CLL cells are associated with alterations in free radical generation, mitochondrial biogenesis activity, and chemosensitivity. Abrogation of survival signaling by blocking ER to Golgi protein transport may be a promising therapeutic strategy for the treatment of CLL patients that respond poorly to conventional chemotherapy. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular signaling pathways initiated by secreted proteins are important in the co-ordination of tissue interactions in multi-cellular organisms, particularly during embryonic development. These signaling cascades direct diverse cellular events, including proliferation, differentiation and migration, in both autocrine and paracrine modes. In adult animals, abnormal function of these proteins often results in degenerative and tumourigenic syndromes. In this study, I have focused on elucidating the role of Bone Morphogenetic Protein (Bmp) signal transduction during neuronal specification and differentiation in the vertebrate embryo, using the mouse retina as a model. Using tissue-specific conditional knock-out approaches, the consequences of genetic loss-of-function of this signaling pathway on retinal physiology were examined. Mutant mice lacking Bmp type I receptor function displayed a range of retinal phenotypes, each of which appeared to be regulated at a different threshold of Bmp receptor activity. Novel essential functions for Bmp signaling were uncovered for retinal neurogenesis, cell survival, and axonal pathfinding at the optic disc. Further, BmprIa and BmprIa exhibited genetic interactions suggestive of functional redundancy. To further characterize the underlying molecular bases for the pleiotropic effects of Bmp receptors, retina-specific loss-of-function mutants of the obligate Bmp-activated transcriptional mediator Smad4 were generated. A comparison of the retina-specific Smad4 mutant phenotypes with those of the Bmp receptor mutant retina revealed that only a subset of retinal phenotypes, namely optic disc axon pathfinding and axial patterning were common for both classes of mutant animals. Thus, these results suggest that, contrary to the classic scheme of Bmp signal transduction, Smad4-independent pathways may be operative downstream of the type I receptors. Indeed, such alternative intracellular signaling cascades may constitute a molecular basis for the multiple cellular responses elicited by Bmp signaling. Finally, I tested whether the potential Bmp pathway targets, the extracellular ligands Fgf9 and Fgf15, mediate essential cellular processes in the retina. The analyses of Fgf9 −/−; Fgf15−/− mutant mice posit a novel shared role for these genes in intra-retinal axon pathfinding. Collectively, these studies have elucidated part of the molecular machinery directing mammalian neuro-retinal development, and provided useful in vivo models to study visual function. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MEKK2 is an evolutionarily conserved mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that controls the MAPK and IKK-NF-κB pathways. The MAPK and IKK pathways are intracellular signaling networks that are crucial for the Toll-like receptor (TLR) mediated innate immunity, cellular stress and many other physiological responses. Members of the MAP3K family are central to the activation of these processes. However, the molecular mechanisms underlying stimuli-mediated MAP3K activation remain largely unknown. In this study, we identified a key phosphoserine residue, Ser-519 in MEKK2, and its equivalent site Ser-526 in MEKK3 within their activation loop whose phosphorylation are essential for their optimal activation. Mutation of this regulatory serine to an alanine severely impaired MEKK2 activation and MEKK2 signaling to its downstream targets. To demonstrate that physiological stimuli induce this serine phosphorylation, we generated an antibody that specifically recognizes the phosphorylated serine residue. We found that many, but not all, of the MAPK agonists, including the TLR ligands, growth factors, cytokines and cellular stresses, induced this regulatory serine phosphorylation in MEKK2, suggesting an involvement of MEKK2 in the activation of the MAPK cascade leading to different cellular responses. We further investigated the specific role of MEKK2 in LPS/TLR4 signaling by using MEKK2−/− mice. We found that MEKK2 was selectively required for LPS-induced ERK1/2 activation, but not JNK, p38 or NF-κB activation. We also found that MEKK2 was involved in TLR4 dependent induction of proinflammatory cytokines and LPS-induced septic shock. In conclusion, we identified a key regulatory serine residue in the activation loop of MEKK2 whose phosphorylation is a key sensor of receptor- and cellular stress-mediated signals. We also demonstrated that MEKK2 is crucial for TLR4-mediated innate immunity. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular migration is essential to many normal cellular processes. In tumor cells, aberrant activation of the normal pathways regulating migration is one of the critical steps in the development of metastasis. Previously, I demonstrated for the first time that overexpression of Tiam1, a guanine nucleotide exchange factor (GNEF) for small G proteins in the Rho family, could alter migration in colorectal tumor cells. ^ This dissertation focuses on the roles of Tiam1 in promoting cell migration, survival, and metastasis of colorectal carcinoma cells, utilizing the model system I developed. To determine the in vivo phenotype of the migratory cell lines, athymic nude mice were injected with cells into the orthotopic site. Several of the mice injected with cells of increased migratory potential had metastases. Thus, the in vitro selection for increased migration resulted in increased metastatic potential in vivo, and therefore, the Tiam1-overexpressing cells provide a model to examine signal transduction pathways important to this process. ^ To examine effects of Tiam1 signaling on small G proteins critical to cellular functions associated with migration, I examined the activation status of the small G proteins Rac, Rho, and Cdc42. The cells of increased migratory potential have increased GTP-bound Rac and Rho, compared to control SW480 cells. Cells that overexpress Tiam1 are more migratory and are resistant to detachment-induced death, or anoikis. To determine which effects and phenotypes were Tiam1-specific, we utilized siRNA to downregulate Tiam1 expression. These results demonstrate that Tiam1 is sufficient but not required for the migration of colorectal carcinoma cells in our model system, and that the biologically selected cells have additional changes that promote migration besides the increase in Tiam1. I also show that Tiam1 protects colorectal carcinoma cells from detachment-induced death, but is not required for anoikis resistance in the biologically selected migratory cells. ^ In summary, my studies demonstrate a heretofore-unknown regulator of phenotypes critical to the development of colorectal carcinoma metastases, overexpression of Tiam1. Understanding the mechanism by which Tiam1 contributes to cellular migration and metastasis is crucial to developing desperately needed new therapies for colorectal carcinoma. ^