976 resultados para Geodesic Compositions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a non-conformal metric that generalizes the geodesic active contours approach for image segmentation. The new metric is obtained by adding to the Euclidean metric an additional term that penalizes the misalignment of the curve with the image gradient and multiplying the resulting metric by a conformal factor that depends on the edge intensity. In this way, a closer fitting to the edge direction results. The provided experimental results address the computation of the geodesics of the new metric by applying a gradient descent to externally provided curves. The good performance of the proposed techniques is demonstrated in comparison with other active contours methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit using materials of negative dielectric and magnetic constants. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al 2000) and the Spherical Geodesic Waveguide (SGW)(Minano et all 2011) have been claimed to break the diffraction limit using positive refraction with a different meaning. In these cases, it has been considered the power transmission from a point source to a point receptor, which falls drastically when the receptor is displaced from the focus by a distance much smaller than the wavelength. Moreover, recent analysis of the SGW with defined object and image surfaces, which are both conical sections of the sphere, has shown that the system transmits images bellow diffraction limit. The key assumption is the use of a perfectly absorbing receptor called perfect drain. This receptor is capable to absorb all the radiation without reflection or scattering. Here, it is presented the COMSOL analysis of the SGW using a perfect drain that absorbs perfectly two modes. The design procedure for PD capable to absorb k modes is proposed, as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently it has been proved theoretically (Miñano et al, 2011) that the super-resolution up to ?/500 can be achieved using an ideal metallic Spherical Geodesic Waveguide (SGW). This SGW is a theoretical design, in which the conductive walls are considered to be lossless conductors with zero thickness. In this paper, we study some key parameters that might influence the super resolution properties reported in (Miñano et al, 2011), such as losses, metal type, the thickness of conductive walls and the deformation from perfect sphere. We implement a realistic SGW in COMSOL multiphysics and analyze its super-resolution properties. The realistic model is designed in accordance with the manufacturing requirements and technological limitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous publications (Miñano et al, 2011) have shown that using a Spherical Geodesic Waveguide (SGW), it can be achieved the super-resolution up to ? /500 close to a set of discrete frequencies. These frequencies are directly connected with the well-known Schumann resonance frequencies of spherical symmetric systems. However, the Spherical Geodesic Waveguide (SGW) has been presented as an ideal system, in which the technological obstacles or manufacturing feasibility and their influence on final results were not taken into account. In order to prove the concept of superresolution experimentally, the Spherical Geodesic Waveguide is modified according to the manufacturing requirements and technological limitations. Each manufacturing process imposes some imperfections which can affect the experimental results. Here, we analyze the influence of the manufacturing limitations on the super-resolution properties of the SGW. Beside the theoretical work, herein, there has been presented the experimental results, as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. In particular, a Dirac delta electric field in the object plane is focused without diffraction limit to the Dirac delta electric field in the image plane. Two devices with positive refraction, the Maxwell Fish Eye lens (MFE) and the Spherical Geodesic Waveguide (SGW) have been claimed to break the diffraction limit using positive refraction with a different meaning. In these cases, it has been considered the power transmission from a point source to a point receptor, which falls drastically when the receptor is displaced from the focus by a distance much smaller than the wavelength. Although these systems can detect displacements up to ?/3000, they cannot be compared to the NRL, since the concept of image is different. The SGW deals only with point source and drain, while in the case of the NRL, there is an object and an image surface. Here, it is presented an analysis of the SGW with defined object and image surfaces (both are conical surfaces), similarly as in the case of the NRL. The results show that a Dirac delta electric field on the object surface produces an image below the diffraction limit on the image surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfect drain for the Maxwell Fish Eye (MFE) is a nonmagnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity ? that depends on frequency. However, this material is only a theoretical material, so it can not be used in practical devices. Recently, the perfect drain has been claimed as necessary to achieve super-resolution [Leonhard 2009, New J. Phys. 11 093040], which has increased the interest for practical perfect drains suitable for manufacturing. Here, we analyze the superresolution properties of a device equivalent to the MFE, known as Spherical Geodesic Waveguide (SGW), loaded with the perfect drain. In the SGW the source and drain are implemented with coaxial probes. The perfect drain is realized using a circuit (made of a resistance and a capacitor) connected to the drain coaxial probes. Superresolution analysis for this device is done in Comsol Multiphysics. The results of simulations predict the superresolution up to ? /3000 and optimum power transmission from the source to the drain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonhardt demonstrated (2009) that the 2D Maxwell Fish Eye lens (MFE) can focus perfectly 2D Helmholtz waves of arbitrary frequency, i.e., it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a "perfect point drain" located at the corresponding image point. Moreover, a prototype with λ/5 superresolution (SR) property for one microwave frequency has been manufactured and tested (Ma et al, 2010). Although this prototype has been loaded with an impedance different from the "perfect point drain", it has shown super-resolution property. However, neither software simulations nor experimental measurements for a broad band of frequencies have yet been reported. Here we present steady state simulations for two cases, using perfect drain as suggested by Leonhardt and without perfect drain as in the prototype. All the simulations have been done using a device equivalent to the MFE, called the Spherical Geodesic Waveguide (SGW). The results show the super-resolution up to λ/3000, for the system loaded with the perfect drain, and up to λ/500 for a not perfect load. In both cases super-resolution only happens for discrete number of frequencies. Out of these frequencies, the SGW does not show super-resolution in the analysis carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous publications (Miñano et al, 2011 and Gonzalez et al, 2012) have shown that using a Spherical Geodesic Waveguide (SGW) it can be achieved the super-resolution up to λ/3000, which is far below the classic Abbe diffraction limit, close to a set of discrete microwave frequencies. The SGW was designed and simulated in COMSOL as a thin geodesic waveguide bounded by an ideal and lossless metal. Herein we present the experimental results for a manufactured SGW, slightly modified due to fabrication requirements, showing the super-resolution up to λ/105.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data-related properties of the activities involved in a service composition can be used to facilitate several design-time and run-time adaptation tasks, such as service evolution, distributed enactment, and instance-level adaptation. A number of these properties can be expressed using a notion of sharing. We present an approach for automated inference of data properties based on sharing analysis, which is able to handle service compositions with complex control structures, involving loops and sub-workflows. The properties inferred can include data dependencies, information content, domain-defined attributes, privacy or confidentiality levels, among others. The analysis produces characterizations of the data and the activities in the composition in terms of minimal and maximal sharing, which can then be used to verify compliance of potential adaptation actions, or as supporting information in their generation. This sharing analysis approach can be used both at design time and at run time. In the latter case, the results of analysis can be refined using the composition traces (execution logs) at the point of execution, in order to support run-time adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collectively, the xanthophyll class of carotenoids perform a variety of critical roles in light harvesting antenna assembly and function. The xanthophyll composition of higher plant photosystems (lutein, violaxanthin, and neoxanthin) is remarkably conserved, suggesting important functional roles for each. We have taken a molecular genetic approach in Arabidopsis toward defining the respective roles of individual xanthophylls in vivo by using a series of mutant lines that selectively eliminate and substitute a range of xanthophylls. The mutations, lut1 and lut2 (lut = lutein deficient), disrupt lutein biosynthesis. In lut2, lutein is replaced mainly by a stoichiometric increase in violaxanthin and antheraxanthin. A third mutant, aba1, accumulates normal levels of lutein and substitutes zeaxanthin for violaxanthin and neoxanthin. The lut2aba1 double mutant completely lacks lutein, violaxanthin, and neoxanthin and instead accumulates zeaxanthin. All mutants were viable in soil and had chlorophyll a/b ratios ranging from 2.9 to 3.5 and near wild-type rates of photosynthesis. However, mutants accumulating zeaxanthin exhibited a delayed greening virescent phenotype, which was most severe and often lethal when zeaxanthin was the only xanthophyll present. Chlorophyll fluorescence quenching kinetics indicated that both zeaxanthin and lutein contribute to nonphotochemical quenching; specifically, lutein contributes, directly or indirectly, to the rapid rise of nonphotochemical quenching. The results suggest that the normal complement of xanthophylls, while not essential, is required for optimal assembly and function of the light harvesting antenna in higher plants.