918 resultados para Genotype-phenotype Correlations
Resumo:
1. The presence of an across-species trade-off between dispersal ability and competitive ability has been proposed as a mechanism that facilitates coexistence. It is not clear if a similar trade-off exists within species. Such a trade-off would constrain the evolution of either trait and, given appropriate selection pressures, promote local adaptation in these traits. 2. This study found substantial levels of heritable variation in competitive ability of the pea aphid, Acyrthosiphon pisum Harris (Homoptera: Aphididae), measured in terms of relative survival when reared with a single clone of the vetch aphid, Megoura viciae Buckton (Homoptera: Aphididae). 3. Pea aphids can move to new patches by either flying (longer distance dispersal) or walking (local dispersal) from plant to plant. There was considerable clonal variation in dispersal ability, measured in terms of the proportion of winged offspring produced, and ability to survive away from their host plant. 4. Winged individuals showed longer off-plant survival times than wingless forms of the same pea aphid clone. 5. There was no evidence of a relationship between clonal competitive ability and either measure of dispersal ability, although the power of the test is limited by the number of pea aphid clones used in the trial. 6. However, there was a positive correlation between clonal fecundity and the proportion of winged offspring produced. Although speculative, it is suggested that clones that are more likely to either overwhelm their host plant or attract higher numbers of natural enemies as a result of having higher fecundity are more likely to produce winged morphs.
Resumo:
We show that most isolates of influenza A induce filamentous changes in infected cells in contrast to A/WSN/33 and A/PR8/34 strains which have undergone extensive laboratory passage and are mouse-adapted. Using reverse genetics, we created recombinant viruses in the naturally filamentous genetic background of A/Victoria/3/75 and established that this property is regulated by the M1 protein sequence, but that the phenotype is complex and several residues are involved. The filamentous phenotype was lost when the amino acid at position 41 was switched from A to V, at the same time, this recombinant virus also became insensitive to the antibody 14C2. On the other hand, the filamentous phenotype could be fully transferred to a virus containing RNA segment 7 of the A/WSN/33 virus by a combination of three mutations in both the amino and carboxy regions of the M1 protein. This observation suggests that an interaction among these regions of M1 may occur during assembly. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
It has long been suggested that the overall shape of the antigen combining site (ACS) of antibodies is correlated with the nature of the antigen. For example, deep pockets are characteristic of antibodies that bind haptens, grooves indicate peptide binders, while antibodies that bind to proteins have relatively flat combining sites. In. 1996, MacCallum, Martin and Thornton used a fractal shape descriptor and showed a strong correlation of the shape of the binding region with the general nature of the antigen. However, the shape of the ACS is determined primarily by the lengths of the six complementarity-determining regions (CDRs). Here, we make a direct correlation between the lengths of the CDRs and the nature of the antigen. In addition, we show significant differences in the residue composition of the CDRs of antibodies that bind to different antigen classes. As well as helping us to understand the process of antigen recognition, autoimmune disease and cross-reactivity these results are of direct application in the design of antibody phage libraries and modification of affinity. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The influence of temperature on life history traits of four Acyrthosiphon pisum clones was investigated, together with their resistance to one genotype of the fungal entomopathogen Erynia neoaphidis . There was no difference among aphid clones in development rate, but they did differ in fecundity. Both development rate and fecundity were influenced by temperature, but all clones showed similar responses to the changes in temperature (i.e. the interaction term was nonsignificant). However, there were significant differences among clones in susceptibility to the pathogen, and this was influenced by temperature. Furthermore, the clones differed in how temperature influenced susceptibility, with susceptibility rankings changing with temperature. Two clones showed changes in susceptibility which mirrored changes in the in vitro vegetative growth rate of E. neoaphidis at different temperatures, whereas two other clones differed considerably from this expected response. Such interactions between genotype and temperature may help maintain heritable variation in aphid susceptibility to fungal pathogen attack and have implications for our understanding of disease dynamics in natural populations. This study also highlights the difficulties of drawing conclusions about the efficacy of a biological control agent when only a restricted range of pest genotypes or environmental conditions are considered.
Resumo:
Three new metal-organic polymeric complexes, [Fe(N-3)(2)(bPP)(2)] (1), [Fe(N-3)(2)(bpe)] (2), and [Fe(N-3)(2)(phen)] (3) [bpp = (1,3-bis(4-pyridyl)-propane), bpe = (1,2-bis(4-pyridyl)-ethane), phen = 1,10-phenanthroline], have been synthesized and characterized by single-crystal X-ray diffraction studies and low-temperature magnetic measurements in the range 300-2 K. Complexes 1 and 2 crystallize in the monoclinic system, space group C2/c, with the following cell parameters: a = 19.355(4) Angstrom, b = 7.076(2) Angstrom, c = 22.549(4) Angstrom, beta = 119.50(3)degrees, Z = 4, and a = 10.007(14) Angstrom, b = 13.789(18) Angstrom, c = 10.377(14) Angstrom, beta = 103.50(1)degrees, Z = 4, respectively. Complex 3 crystallizes in the triclinic system, space group P (1) over bar, with a = 7.155(12) Angstrom, b = 10.066(14) Angstrom, c = 10.508(14) Angstrom, alpha = 109.57(1)degrees, beta = 104.57(1)degrees, gamma = 105.10(1)degrees, and Z = 2. All coordination polymers exhibit octahedral Fe(II) nodes. The structural determination of 1 reveals a parallel interpenetrated structure of 2D layers of (4,4) topology, formed by Fe(II) nodes linked through bpp ligands, while mono-coordinated azide anions are pendant from the corrugated sheet. Complex 2 has a 2D arrangement constructed through 1D double end-to-end azide bridged iron(11) chains interconnected through bpe ligands. Complex 3 shows a polymeric arrangement where the metal ions are interlinked through pairs of end-on and end-to-end azide ligands exhibiting a zigzag arrangement of metals (Fe-Fe-Fe angle of 111.18degrees) and an intermetallic separation of 3.347 Angstrom (through the EO azide) and of 5.229 Angstrom (EE azide). Variable-temperature magnetic susceptibility data suggest that there is no magnetic interaction between the metal centers in 1, whereas in 2 there is an antiferromagnetic interaction through the end-to-end azide bridge. Complex 3 shows ferro- as well as anti-ferromagnetic interactions between the metal centers generated through the alternating end-on and end-to-end azide bridges. Complex I has been modeled using the D parameter (considering distorted octahedral Fe(II) geometry and with any possible J value equal to zero) and complex 2 has been modeled as a one-dimensional system with classical and/or quantum spin where we have used two possible full diagonalization processes: without and with the D parameter, considering the important distortions of the Fe(II) ions. For complex 3, the alternating coupling model impedes a mathematical solution for the modeling as classical spins. With quantum spin, the modeling has been made as in 2.
Resumo:
Experimental difficulties sometimes force modellers to use predicted rate coefficients for reactions of oxygenated volatile organic compounds (oVOCs). We examine here methods for making the predictions for reactions of atmospheric initiators of oxidation, NO3, OH, O-3 and O(P-3), with unsaturated alcohols and ethers. Logarithmic correlations are found between measured rate coefficients and calculated orbital energies, and these correlations may be used directly to estimate rate coefficients for compounds where measurements have not been performed. To provide a shortcut that obviates the need to calculate orbital energies, structure-activity relations (SARs) are developed. Our SARs are tested for predictive power against compounds for which experimental rate coefficients exist, and their accuracy is discussed. Estimated atmospheric lifetimes for oVOCs are presented. The SARs for alkenols successfully predict key rate coefficients, and thus can be used to enhance the scope of atmospheric models incorporating detailed chemistry. SARs for the ethers have more limited applicability, but can still be useful in improving tropospheric models. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F-9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding.
Resumo:
Nutrition science finds itself at a major crossroad. On the one hand we can continue the current path, which has resulted in some substantial advances, but also many conflicting messages which impair the trust of the general population, especially those who are motivated to improve their health through diet. The other road is uncharted and is being built over the many exciting new developments in life sciences. This new era of nutrition recognizes the complex relation between the health of the individual, its genome, and the life-long dietary exposure, and has lead to the realisation that nutrition is essentially a gene - environment interaction science. This review on the relation between genotype, diet and health is the first of a series dealing with the major challenges in molecular nutrition, analyzing the foundations of nutrition research. With the unravelling of the human genome and the linking of its variability to a multitude of phenotypes from " healthy'' to an enormously complex range of predispositions, the dietary modulation of these propensities has become an area of active research. Classical genetic approaches applied so far in medical genetics have steered away from incorporating dietary effects in their models and paradoxically, most genetic studies analyzing diet-associated phenotypes and diseases simply ignore diet. Yet, a modest but increasing number of studies are accounting for diet as a modulator of genetic associations. These range from observational cohorts to intervention studies with prospectively selected genotypes. New statistical and bioinformatics approaches are becoming available to aid in design and evaluation of these studies. This review discusses the various approaches used and provides concrete recommendations for future research.
Resumo:
The increase in CVD incidence following the menopause is associated with oestrogen loss. Dietary isoflavones are thought to be cardioprotective via their oestrogenic and oestrogen receptor-independent effects, but evidence to support this role is scarce. Individual variation in response to diet may be considerable and can obscure potential beneficial effects in a sample population; in particular, the response to isoflavone treatment may vary according to genotype and equol-production status. The effects of isoflavone supplementation (50hairspmg/d) on a range of established and novel biomarkers of CVD, including markers of lipid and glucose metabolism and inflammatory biomarkers, have been investigated in a placebo-controlled 2x8-week randomised cross-over study in 117 healthy post-menopausal women. Responsiveness to isoflavone supplementation according to (1) single nucleotide polymorphisms in a range of key CVD genes, including oestrogen receptor (ER) alpha and beta and (2) equol-production status has been examined. Isoflavones supplementation was found to have no effect on markers of lipids and glucose metabolism. Isoflavones improve C-reactive protein concentrations but do not affect other plasma inflammatory markers. There are no differences in response to isoflavones according to equol-production status. However, differences in HDL-cholesterol and vascular cell adhesion molecule 1 response to isoflavones v. placebo are evident with specific ER beta genotypes. In conclusion, isoflavones have beneficial effects on C-reactive protein, but not other cardiovascular risk markers. However, specific ER beta gene polymorphic subgroups may benefit from isoflavone supplementation.
Resumo:
Previous studies comparing the biokinetics of deuterated natural (RRR) and synthetic (all-rac) α-tocopherol (vitamin E) used a simultaneous ingestion or competitive uptake approach and reported relative bioavailability ratios close to 2:1, higher than the accepted biopotency ratio of 1.36:1. The aim of the current study was to compare the biokinetics of deuterated natural and synthetic vitamin E using a noncompetitive uptake model both before and after vitamin E supplementation in a distinct population. Healthy men (n = 10) carrying the apolipoprotein (apo)E4 genotype completed a randomized crossover study, comprised of two 4-wk treatments with 400 mg/d (RRR-α-tocopheryl and all-rac-α-tocopheryl acetate) with a 12-wk washout period between treatments. Before and after each treatment period, the subjects consumed a capsule containing 150 mg deuterated α-tocopheryl acetate in either the PRR or all-rac form depending on their treatment regimen. Blood was obtained up to 48 h after ingestion, and tocopherols analyzed by LC/MS. After deuterated all-rac administration, plasma deuterated tocopherol maximum concentrations and area under the concentration vs. time curves (AUC) were lower than those following RRR administration. The RRR:all-rac ratios determined from the deuterated biokinetic profiles (maximum concentration; C-max) and AUCs were 1.35:1 &PLUSMN; 0.17 and 1.33:1 &PLUSMN; 0.18, respectively. The 4-wk supplementation with either PRR or all-rac significantly increased plasma a-tocopherol concentrations (P < 0.001), but decreased the plasma response to newly absorbed deuterated RRR or all-rac α-tocopherol. Using a noncompetitive uptake approach, the relative bioavailability of natural to synthetic vitamin E in apoE4 males was close to the currently accepted biopotency ratio of 1.36:1.
Resumo:
In order to gain a more comprehensive understanding of the aetiology of apolipoprotein E4 genotype-cardiovascular disease (CVD) associations, the impact of the apoE genotype on the macrophage inflammatory response was examined. The murine monocyte-macrophage cell line (RAW 264.7) stably transfected to produce equal amounts of human apoE3 or apoE4 was used. Following LPS stimulation, apoE4-macrophages showed higher and lower concentrations of tumour necrosis factor alpha (pro-inflammatory) and interleukin 10 (anti-inflammatory), respectively, both at mRNA and protein levels. In addition, increased expression of heme oxygenase-1 (a stress-induced anti-inflammatory protein) was observed in the apoE4-cells. Furthermore, in apoE4-macrophages, an enhanced transactivation of the key redox sensitive transcription factor NF-kappa B was shown. Current data indicate that apoE4 macrophages have an altered inflammatory response, which may contribute to the higher CVD risk observed in apoE4 carriers. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The molecular basis of the positive association between apoE4 genotype and CVD remains unclear. There is direct in vitro evidence indicating that apoE4 is a poorer antioxidant relative to the apoE3 isoform, with some indirect in vivo evidence also available. Therefore it was hypothesised that apoE4 carriers may benefit from alpha-tocopherol (alpha-Toc) supplementation. Targeted replacement mice expressing the human apoE3 and apoE4 were fed with a diet poor (0 mg/kg diet) or rich (200 mg/kg diet) in alpha-Toc for 12 weeks. Neither apoE genotype nor dietary alpha-Toc exerted any effects on the antioxidant defence system, including glutathione, catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase activities. In addition, no differences were observed in mitogen-induced lymphocyte proliferation. alpha-Toc concentrations were modestly higher in plasma and lower in tissues of apoE4 compared with apoE3 mice, with the greatest differences evident in the lung, suggesting that an apoE4 genotype may reduce alpha-Toc delivery to tissues. A tendency towards increased plasma F-2-isoprostanes in apoE4 mice was observed, while liver thiobarbituric acid-reactive substances did not differ between apoE3 and apoE4 mice. In addition, C-reactive protein (CRP) concentrations were reduced in apoE4 mice indicating that this positive effect on CRP may in part negate the increased CVD risk associated with an apoE4 genotype.
Resumo:
Apolipoprotein E4 (apoE4) genotype is associated with an increased risk for Alzheimer's disease (AD). This is thought to be in part attributable to an impact of apoE genotype on the processing of the transmembrane amyloid precursor protein (APP) thereby contributing to amyloid beta peptide formation in apoE4 carriers, which is a primary patho-physiological feature of AD. As apoE and alphato-copherol (alpha-toc) have been shown to modulate membrane bilayer properties and hippocampal gene expression, we studied the effect of apoE genotype on APP metabolism and cell cycle regulation in response to dietary a-toc. ApoE3 and apoE4 transgenic mice were fed a diet low (VE) or high (+VE) in vitamin E (3 and 235 mg alpha-toe/kg diet, respectively) for 12 weeks. Cholesterol levels and membrane fluidity were not different in synaptosomal plasma membranes isolated from brains of apoE3 and apoE4 mice (-VE and +VE). Non-amyloidogenic alpha-secretase mRNA concentration and activity were significantly higher in brains of apoE3 relative to apoE4 mice irrespective of the dietary a-toe supply, while amyloidogenic beta-secretase and gamma-secretase remained unchanged. Relative mRNA concentration of cell cycle related proteins were modulated differentially by dietary a-toc supplementation in apoE3 and apoE4 mice, suggesting genotype-dependent signalling effects on cell cycle regulation.
Resumo:
The aetiology of apoE4 genotype-Alzheimer's disease (AD) association are complex. The current study emphasizes the impact of apoE genotype and potential beneficial effects of vitamin E (VE) in relation to oxidative stress. Agonist induced neuronal cell death was examined 1) in the presence of conditioned media containing equal amounts of apoE3 or apoE4 obtained from stably transfected macrophages, and 2) after pretreatment with alpha- and gamma-tocopherol, and -tocotrienol. ApoE3 and apoE4 transgenic mice were fed a diet poor or rich in VE to study the interplay of both apoE genotype and VE status, on membrane lipid peroxidation, antioxidative enzyme activity and glutathione levels in the brain. Cytotoxicity of hydrogen peroxide and glutamate was higher in neuronal cells cultured with apoE4 than apoE3 conditioned media. VE pre-treatment of neurons counteracted the cytotoxicity of a peroxide challenge but not of nitric oxide. No significant effects of apoE genotype or VE supplementation were observed on lipid peroxidation or antioxidative status in the brain of apoE3 and apoE4 mice. VE protects against oxidative insults in vitro, however, no differences in brain oxidative status were observed in mice. Unlike in cultured cells, apoE4 may not contribute to higher neuronal oxidative stress in the brain of young targeted replacement mice.
Resumo:
Background: The hypocholesterolemic effects of soy foods are well established, and it has been suggested that isoflavones are responsible for this effect. However, beneficial effects of isolated isoflavones on lipid biomarkers of cardiovascular disease risk have not yet been shown. Objective: The objective was to investigate the effects of isolated soy isoflavones on metabolic biomarkers of cardiovascular disease risk, including plasma total, HDL, and LDL cholesterol; triacylglycerols; lipoprotein(a); the percentage of small dense LDL; glucose; nonesterified fatty acids; insulin; and the homeostasis model assessment of insulin resistance. Differences with respect to single nucleotide polymorphisms in selected genes [ie, estrogen receptor a (Xbal and PvuII), estrogen receptor beta (AluI), and estrogen receptor beta(cx) (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), cholesteryl ester transfer protein (TaqIB), and leptin receptor (Gln223Arg)] and with respect to equol production were investigated. Design: Healthy postmenopausal women (n = 117) participated in a randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2: 1; 50 mg/d) or placebo cereal bars were consumed for 8 wk, with a wash-out period of 8 wk before the crossover. Results: Isoflavones did not have a significant beneficial effect on plasma concentrations of lipids, glucose, or insulin. A significant difference between the responses of HDL cholesterol to isoflavones and to placebo was found with estrogen receptor 0(cx) Tsp5091 genotype AA, but not GG or GA. Conclusions: Isoflavone supplementation, when provided in the form and dose used in this study, had no effect on lipid or other metabolic biomarkers of cardiovascular disease risk in postmenopausal women but may increase HDL cholesterol in an estrogen receptor P gene-polymorphic subgroup.