937 resultados para Generalized Disjunctive Programming
Resumo:
A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
This paper, one of a simultaneously published set, describes the establishment in 1990 of the UK standards project for the Pop programming language, and the progress of the project to the end of 1993.
Resumo:
In 1989, the computer programming language POP-11 is 21 years old. This book looks at the reasons behind its invention, and traces its rise from an experimental language to a major AI language, playing a major part in many innovating projects. There is a chapter on the inventor of the language, Robin Popplestone, and a discussion of the applications of POP-11 in a variety of areas. The efficiency of AI programming is covered, along with a comparison between POP-11 and other programming languages. The book concludes by reviewing the standardization of POP-11 into POP91.
Resumo:
Across the world there are many bodies currently involved in researching into the design of autonomous guided vehicles (AGVs). One of the greatest problems at present however, is that much of the research work is being conducted in isolated groups, with the resulting AGVs sensor/control/command systems being almost completely nontransferable to other AGV designs. This paper describes a new modular method for robot design which when applied to AGVs overcomes the above problems. The method is explained here with respect to all forms of robotics but the examples have been specifically chosen to reflect typical AGV systems.
Resumo:
The premotor theory of attention claims that attentional shifts are triggered during response programming, regardless of which response modality is involved. To investigate this claim, event-related brain potentials (ERPs) were recorded while participants covertly prepared a left or right response, as indicated by a precue presented at the beginning of each trial. Cues signalled a left or right eye movement in the saccade task, and a left or right manual response in the manual task. The cued response had to be executed or withheld following the presentation of a Go/Nogo stimulus. Although there were systematic differences between ERPs triggered during covert manual and saccade preparation, lateralised ERP components sensitive to the direction of a cued response were very similar for both tasks, and also similar to the components previously found during cued shifts of endogenous spatial attention. This is consistent with the claim that the control of attention and of covert response preparation are closely linked. N1 components triggered by task-irrelevant visual probes presented during the covert response preparation interval were enhanced when these probes were presented close to cued response hand in the manual task, and at the saccade target location in the saccade task. This demonstrates that both manual and saccade preparation result in spatially specific modulations of visual processing, in line with the predictions of the premotor theory.
Resumo:
This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets.