863 resultados para Gaussian Plume model for multiple sources foe Cochin


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Petroleum pipelines are the nervous system of the oil industry, as this transports crude oil from sources to refineries and petroleum products from refineries to demand points. Therefore, the efficient operation of these pipelines determines the effectiveness of the entire business. Pipeline route selection plays a major role when designing an effective pipeline system, as the health of the pipeline depends on its terrain. The present practice of route selection for petroleum pipelines is governed by factors such as the shortest distance, constructability, minimal effects on the environment, and approachability. Although this reduces capital expenditure, it often proves to be uneconomical when life cycle costing is considered. This study presents a route selection model with the application of an Analytic Hierarchy Process (AHP), a multiple attribute decision making technique. AHP considers all the above factors along with the operability and maintainability factors interactively. This system has been demonstrated here through a case study of pipeline route selection, from an Indian perspective. A cost-benefit comparison of the shortest route (conventionally selected) and optimal route establishes the effectiveness of the model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the detection of biased information sources in the ubiquitous code-division multiple-access (CDMA) scheme. We propose a simple modification to both the popular single-user matched-filter detector and a recently introduced near-optimal message-passing-based multiuser detector. This modification allows for detecting modulated biased sources directly with no need for source coding. Analytical results and simulations with excellent agreement are provided, demonstrating substantial improvement in bit error rate in comparison with the unmodified detectors and the alternative of source compression. The robustness of error-performance improvement is shown under practical model settings, including bias estimation mismatch and finite-length spreading codes. © 2007 IOP Publishing Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adapting to blurred or sharpened images alters perceived blur of a focused image (M. A. Webster, M. A. Georgeson, & S. M. Webster, 2002). We asked whether blur adaptation results in (a) renormalization of perceived focus or (b) a repulsion aftereffect. Images were checkerboards or 2-D Gaussian noise, whose amplitude spectra had (log-log) slopes from -2 (strongly blurred) to 0 (strongly sharpened). Observers adjusted the spectral slope of a comparison image to match different test slopes after adaptation to blurred or sharpened images. Results did not show repulsion effects but were consistent with some renormalization. Test blur levels at and near a blurred or sharpened adaptation level were matched by more focused slopes (closer to 1/f) but with little or no change in appearance after adaptation to focused (1/f) images. A model of contrast adaptation and blur coding by multiple-scale spatial filters predicts these blur aftereffects and those of Webster et al. (2002). A key proposal is that observers are pre-adapted to natural spectra, and blurred or sharpened spectra induce changes in the state of adaptation. The model illustrates how norms might be encoded and recalibrated in the visual system even when they are represented only implicitly by the distribution of responses across multiple channels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research tests the role of perceived support from multinational corporations and host-country nationals for the adjustment of expatriates and their spouses while on international assignments. The investigation is carried out with matched data from 134 expatriates and their spouses based in foreign multinationals in Malaysia. The results highlight the different reliance on support providers that expatriates and their accompanying spouses found beneficial for acclimatizing to the host-country environment. Improved adjustment in turn was found to have positive effects on expatriates' performance. The research findings have implications for both international human resource management researchers and practitioners. © 2014 © 2014 Taylor & Francis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, it is necessary to modify the traditional GP-LVM to make it capable of handing the supervised or semi-supervised learning tasks. For this purpose, we propose a new semi-supervised GP-LVM framework under the pairwise constraints. Through transferring the pairwise constraints in the observed space to the latent space, the constrained priori information on the latent variables can be obtained. Under this constrained priori, the latent variables are optimized by the maximum a posteriori (MAP) algorithm. The effectiveness of the proposed algorithm is demonstrated with experiments on a variety of data sets. © 2010 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Popular dimension reduction and visualisation algorithms rely on the assumption that input dissimilarities are typically Euclidean, for instance Metric Multidimensional Scaling, t-distributed Stochastic Neighbour Embedding and the Gaussian Process Latent Variable Model. It is well known that this assumption does not hold for most datasets and often high-dimensional data sits upon a manifold of unknown global geometry. We present a method for improving the manifold charting process, coupled with Elastic MDS, such that we no longer assume that the manifold is Euclidean, or of any particular structure. We draw on the benefits of different dissimilarity measures allowing for the relative responsibilities, under a linear combination, to drive the visualisation process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The search-experience-credence framework from economics of information, the human-environment relations models from environmental psychology, and the consumer evaluation process from services marketing provide a conceptual basis for testing the model of "Pre-purchase Information Utilization in Service Physical Environments." The model addresses the effects of informational signs, as a dimension of the service physical environment, on consumers' perceptions (perceived veracity and perceived performance risk), emotions (pleasure) and behavior (willingness to buy). The informational signs provide attribute quality information (search and experience) through non-personal sources of information (simulated word-of-mouth and non-personal advocate sources).^ This dissertation examines: (1) the hypothesized relationships addressed in the model of "Pre-purchase Information Utilization in Service Physical Environments" among informational signs, perceived veracity, perceived performance risk, pleasure, and willingness to buy, and (2) the effects of attribute quality information and sources of information on consumers' perceived veracity and perceived performance risk.^ This research is the first in-depth study about the role and effects of information in service physical environments. Using a 2 x 2 between subjects experimental research procedure, undergraduate students were exposed to the informational signs in a simulated service physical environment. The service physical environments were simulated through color photographic slides.^ The results of the study suggest that: (1) the relationship between informational signs and willingness to buy is mediated by perceived veracity, perceived performance risk and pleasure, (2) experience attribute information shows higher perceived veracity and lower perceived performance risk when compared to search attribute information, and (3) information provided through simulated word-of-mouth shows higher perceived veracity and lower perceived performance risk when compared to information provided through non-personal advocate sources. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to develop, explicate, and validate a comprehensive model in order to more effectively assess community injury prevention needs, plan and target efforts, identify potential interventions, and provide a framework for an outcome-based evaluation of the effectiveness of interventions. A systems model approach was developed to conceptualize the major components of inputs, efforts, outcomes and feedback within a community setting. Profiling of multiple data sources demonstrated a community feedback mechanism that increased awareness of priority issues and elicited support from traditional as well as non-traditional injury prevention partners. Injury countermeasures including education, enforcement, engineering, and economic incentives were presented for their potential synergistic effect impacting on knowledge, attitudes, or behaviors of a targeted population. Levels of outcome data were classified into ultimate, intermediate and immediate indicators to assist with determining the effectiveness of intervention efforts. A collaboration between business and health care was successful in achieving data access and use of an emergency department level of injury data for monitoring of the impact of community interventions. Evaluation of injury events and preventive efforts within the context of a dynamic community systems environment was applied to a study community with examples detailing actual profiling and trending of injuries. The resulting model of community injury prevention was validated using a community focus group, community injury prevention coordinators, and injury prevention national experts. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An integrated flow and transport model using MIKE SHE/MIKE 11 software was developed to predict the flow and transport of mercury, Hg(II), under varying environmental conditions. The model analyzed the impact of remediation scenarios within the East Fork Poplar Creek watershed of the Oak Ridge Reservation with respect to downstream concentration of mercury. The numerical simulations included the entire hydrological cycle: flow in rivers, overland flow, groundwater flow in the saturated and unsaturated zones, and evapotranspiration and precipitation time series. Stochastic parameters and hydrologic conditions over a five year period of historical hydrological data were used to analyze the hydrological cycle and to determine the prevailing mercury transport mechanism within the watershed. Simulations of remediation scenarios revealed that reduction of the highly contaminated point sources, rather than general remediation of the contaminant plume, has a more direct impact on downstream mercury concentrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An integrated flow and transport model using MIKE SHE/MIKE 11 software was developed to predict the flow and transport of mercury, Hg(II), under varying environmental conditions. The model analyzed the impact of remediation scenarios within the East Fork Poplar Creek watershed of the Oak Ridge Reservation with respect to downstream concentration of mercury. The numerical simulations included the entire hydrological cycle: flow in rivers, overland flow, groundwater flow in the saturated and unsaturated zones, and evapotranspiration and precipitation time series. Stochastic parameters and hydrologic conditions over a five year period of historical hydrological data were used to analyze the hydrological cycle and to determine the prevailing mercury transport mechanism within the watershed. Simulations of remediation scenarios revealed that reduction of the highly contaminated point sources, rather than general remediation of the contaminant plume, has a more direct impact on downstream mercury concentrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-output Gaussian processes provide a convenient framework for multi-task problems. An illustrative and motivating example of a multi-task problem is multi-region electrophysiological time-series data, where experimentalists are interested in both power and phase coherence between channels. Recently, the spectral mixture (SM) kernel was proposed to model the spectral density of a single task in a Gaussian process framework. This work develops a novel covariance kernel for multiple outputs, called the cross-spectral mixture (CSM) kernel. This new, flexible kernel represents both the power and phase relationship between multiple observation channels. The expressive capabilities of the CSM kernel are demonstrated through implementation of 1) a Bayesian hidden Markov model, where the emission distribution is a multi-output Gaussian process with a CSM covariance kernel, and 2) a Gaussian process factor analysis model, where factor scores represent the utilization of cross-spectral neural circuits. Results are presented for measured multi-region electrophysiological data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemotaxis, the phenomenon in which cells move in response to extracellular chemical gradients, plays a prominent role in the mammalian immune response. During this process, a number of chemical signals, called chemoattractants, are produced at or proximal to sites of infection and diffuse into the surrounding tissue. Immune cells sense these chemoattractants and move in the direction where their concentration is greatest, thereby locating the source of attractants and their associated targets. Leading the assault against new infections is a specialized class of leukocytes (white blood cells) known as neutrophils, which normally circulate in the bloodstream. Upon activation, these cells emigrate out of the vasculature and navigate through interstitial tissues toward target sites. There they phagocytose bacteria and release a number of proteases and reactive oxygen intermediates with antimicrobial activity. Neutrophils recruited by infected tissue in vivo are likely confronted by complex chemical environments consisting of a number of different chemoattractant species. These signals may include end target chemicals produced in the vicinity of the infectious agents, and endogenous chemicals released by local host tissues during the inflammatory response. To successfully locate their pathogenic targets within these chemically diverse and heterogeneous settings, activated neutrophils must be capable of distinguishing between the different signals and employing some sort of logic to prioritize among them. This ability to simultaneously process and interpret mulitple signals is thought to be essential for efficient navigation of the cells to target areas. In particular, aberrant cell signaling and defects in this functionality are known to contribute to medical conditions such as chronic inflammation, asthma and rheumatoid arthritis. To elucidate the biomolecular mechanisms underlying the neutrophil response to different chemoattractants, a number of efforts have been made toward understanding how cells respond to different combinations of chemicals. Most notably, recent investigations have shown that in the presence of both end target and endogenous chemoattractant variants, the cells migrate preferentially toward the former type, even in very low relative concentrations of the latter. Interestingly, however, when the cells are exposed to two different endogenous chemical species, they exhibit a combinatorial response in which distant sources are favored over proximal sources. Some additional results also suggest that cells located between two endogenous chemoattractant sources will respond to the vectorial sum of the combined gradients. In the long run, this peculiar behavior could result in oscillatory cell trajectories between the two sources. To further explore the significance of these and other observations, particularly in the context of physiological conditions, we introduce in this work a simplified phenomenological model of neutrophil chemotaxis. In particular, this model incorporates a trait commonly known as directional persistence - the tendency for migrating neutrophils to continue moving in the same direction (much like momentum) - while also accounting for the dose-response characteristics of cells to different chemical species. Simulations based on this model suggest that the efficiency of cell migration in complex chemical environments depends significantly on the degree of directional persistence. In particular, with appropriate values for this parameter, cells can improve their odds of locating end targets by drifting through a network of attractant sources in a loosely-guided fashion. This corroborates the prediction that neutrophils randomly migrate from one chemoattractant source to the next while searching for their end targets. These cells may thus use persistence as a general mechanism to avoid being trapped near sources of endogenous chemoattractants - the mathematical analogue of local maxima in a global optimization problem. Moreover, this general foraging strategy may apply to other biological processes involving multiple signals and long-range navigation.