886 resultados para Gastrointestinal fistulas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional foods such as probiotics, prebiotics and nutraceuticals are of extreme interest to researchers. There is growing evidence that these food ingredients may improve and in some cases treat certain conditions that are implicated in women's health. The use of probiotics (live, beneficial bacteria) in improving gastrointestinal and non-gastrointestinal tract conditions such as irritable bowel syndrome, candidiasis and other female urogenital tract conditions are reviewed. Emphasis is also given to the importance of prebiotics (non-digestible food ingredients) in osteoporosis management and alleviation of menopausal symptoms and reducing the onset of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is recognised that cholera toxin (Ctx) is a significant cause of gastrointestinal disease globally, particularly in developing countries where access to uncontaminated drinking water is at a premium. Ctx vaccines are prohibitively expensive and only give short-term protection. Consequently, there is scope for the development of alternative control strategies or prophylactics. This may include the use of oligosaccharides as functional mimics for the cell-surface toxin receptor (GM I). Furthermore, the sialic acid component of epithelial receptors has already been shown to contribute significantly to the adhesion and pathogenesis of Ctx. Here, we demonstrate the total inhibition of Ctx using GM1-competitive ELISA with 25 mg mL(-1) of a commercial preparation of sialyloligosaccharides (SOS). The IC50 value was calculated as 5.21 mg mL(-1). One-hundred percent inhibition was also observed at all concentrations of Ctx-HRP tested with 500 ng mL(-1) GM1-OS. Whilst SOS has much lower affinity for Ctx than GM1-OS, the commercial preparation is impure containing only 33.6% carbohydrate; however, the biantennary nature of SOS appears to give a significant increase in potency over constituent monosaccahride residues. It is proposed that SOS could be used as a conventional food additive, such as in emulsifiers, stabilisers or sweeteners, and are classified as nondigestible oligosaccharides that pass into the small intestine, which is the site of Ctx pathogenesis. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is widely reported that cholera toxin (Ctx) remains a significant cause of gastrointestinal disease globally, particularly in developing countries where access to clean drinking water is at a premium. Vaccines are prohibitively expensive and have shown only short-term protection. Consequently, there is scope for continued development of novel treatment strategies. One example is the use of galactooligosaccharides (GOS) as functional mimics for the cell-surface toxin receptor (GM1). In this study, GOS fractions were fractionated using cation exchange chromatography followed by structural characterization using a combination of hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization mass spectrometry (ESI-MS) such that their molecular weight profiles were known. Each profile was correlated against biological activity measured using a competitive inhibitory GM1-linked ELISA. GOS fractions containing > 5% hexasaccharides (DP6) exhibited > 90% binding, with EC50 values between 29.27 and 56.04 mg/mL. Inhibition by GOS DP6, was dose dependent, with an EC50 value of 5.10 mg/mL (5.15 mu M MW of 990 Da). In removing low molecular weight carbohydrates that do possess prebiotic, nutraceutical, and/or biological properties and concentrating GOS DP5 and/or DP6, Ctx antiadhesive activity per unit of (dry) weight was improved. This could be advantageous in the manufacture of pharmaceutical or nutraceutical formulations for the treatment or prevention of an acute or chronic disease associated with or caused by the adhesion and/or uptake of a Ctx or HLT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galactooligosaccharides (GOS) are well-known prebiotic ingredients which can form the basis of new functional dairy products. In this work, the production and characterization of glycated beta-lactoglobulin beta-LG) with prebiotic GOS through the Maillard reaction under controlled conditions (a(w) = 0.44, 40 degrees C for 23 days) have been studied. The extent of glycation of beta-LG was evaluated by formation of furosine which progressively increased with storage for up to 16 days, suggesting that the formation of Amadori compounds prevailed over their degradation. RP-HPLC-UV, SIDS-PAGE, and IEF profiles of beta-LG were modified as a consequence of its glycation. MALDI-ToF mass spectra of glycated beta-LG showed an increase of up to similar to 21% in its average molecular mass after storage for 23 days. Moreover, a decrease in unconjugated GOS (one tri-, two tetra-, and one pentasaccharide) was observed by HPAEC-PAD upon glycation. These results were confirmed by ESI MS. The stability of the glycated beta-LG to in vitro simulated gastrointestinal digestion was also described and compared with that of the unglycated protein. The yield of digestion products of glycated beta-LG was lower than that observed for the unglycated protein. The conjugation of prebiotic carbohydrates to stable proteins and peptides could open new routes of research in the study of functional ingredients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exopolysaccharides (EPS) isolated from two Bifidobacterium strains, one of human intestinal origin (Bifidobacterium longum subsp. longum IPLA E44) and the other from dairy origin (Bifidobacterium animalis subsp. lactis IPLA R1), were subjected to in vitro chemically simulated gastrointestinal digestion. which showed the absence of degradation of both polymers in these conditions. Polymers were then used as carbon sources in pH-controlled faecal batch cultures and compared with the non-prebiotic carbohydrate glucose and the prebiotic inulin to determine changes in the composition of faecal bacteria. A set of eight fluorescent in situ hybridisation oligonucleotide probes targeting 16S rRNA sequences was used to quantify specific groups of microorganisms. Growth of the opportunistic pathogen Clostridium histolyticum occurred with all carbohydrates tested similarly to that found in negative control cultures without added carbohydrate and was mainly attributed to the culture conditions used rather than enhancement of growth by these substrates. Polymers E44 and RI stimulated growth of Lactobacillus/Enterococcus, Bifidobacterium, and Bacteroides/Prevotella in a similar way to that seen with inulin. The EPS RI also promoted growth of the Atopobium cluster during the first 24 h of fermentation. An increase in acetic and lactic acids was found during early stages of fermentation (first 10-24 h) correlating with increases of Lactobacillus, Bifidobacterium, and Atopobium. Propionic acid concentrations increased in old cultures, which was coincident with the enrichment of Clostridium cluster IX in cultures with EPS RI and with the increases in Bacteroides in cultures with both microbial EPS (RI and E44) and inulin. The lowest acetic to propionic acid ratio was obtained for EPS E44. None of the carbohydrates tested supported the growth of microorganisms from Clostridium clusters XIVa+b and IV, results that correlate with the poor butyrate production in the presence of EPS. Thus, EPS synthesized by bifidobacteria from dairy and intestinal origins can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of short chain fatty acids. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and aims: When a high fat oral load is followed several hours later by further ingestion of nutrients, there is an early postprandial peak in plasma triacylglycerol (TG). The aim of this study was to investigate the location and release of lipid from within the gastrointestinal tract. Methods: Ten healthy patients undergoing oesopho-gastro-duodenoscopy (OGD) were recruited. At t=0, all patients consumed a 50 g fat emulsion and at t=5 hours they consumed either water or a 38 g glucose solution. OGD was performed at t=6 hours and jejunal biopsy samples were evaluated for fat storage. A subgroup of five subjects then underwent a parallel metabolic study in which postprandial lipid and hormone measurements were taken during an identical two meal protocol. Results: Following oral fat at t=0, samples from patients that had subsequently ingested glucose exhibited significantly less staining for lipid within the mucosa and submucosa of the jejunum than was evident in patients that had consumed only water (p=0.028). There was also less lipid storage within the cytoplasm of enterocytes (p=0.005) following oral glucose. During the metabolic study, oral glucose consumed five hours after oral fat resulted in a postprandial peak in plasma TG, chylomicron-TG, and apolipoprotein B48 concentration compared with oral water. Conclusion: After a fat load, fat is retained within the jejunal tissue and released into plasma following glucose ingestion, resulting in a peak in chylomicron-TG which has been implicated in the pathogenesis of atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Children with autistic spectrum disorders (ASDs) tend to suffer from severe gastrointestinal problems. Such symptoms may be due to a disruption of the indigenous gut flora promoting the overgrowth of potentially pathogenic micro-organisms. The faecal flora of patients with ASDs was studied and compared with those of two control groups (healthy siblings and unrelated healthy children). Faecal bacterial populations were assessed through the use of a culture-independent technique, fluorescence in situ hybridization, using oligonucleotide probes targeting predominant components of the gut flora. The faecal flora of ASD patients contained a higher incidence of the Clostridium histolyticum group (Clostridium clusters I and 11) of bacteria than that of healthy children. However, the non-autistic sibling group had an intermediate level of the C. histolyticum group, which was not significantly different from either of the other subject groups. Members of the C. histolyticum group are recognized toxin-producers and may contribute towards gut dysfunction, with their metabolic products also exerting systemic effects. Strategies to reduce clostridial population levels harboured by ASD patients or to improve their gut microflora profile through dietary modulation may help to alleviate gut disorders common in such patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is evident that quantitative information on different microbial groups and their contribution in terms of activity in the gastrointestinal (GI) tract of humans and animals is required in order to formulate functional diets targeting improved gut function and host health. In this work, quantitative information on levels and spatial distributions of Bacteroides spp, Eubacterium spp, Clostridium spp, Escherichia coli, Bifidobacterium spp and Lactobacillus/Enterococcus spp. along the porcine large intestine was investigated using 16S rRNA targeted probes and fluorescent in situ hybridisation (FISH). Caecum, ascending colon (AC) and rectum luminal digesta from three groups of individually housed growing pigs fed either a corn-soybean basal diet (CON diet) or a prebiotic diet containing 10 g/kg oligofructose (FOS diet) or trans-galactooligosaccharides (TOS diet) at the expense of cornstarch were analysed. DAPI staining was used to enumerate total number of cells in the samples. Populations of total cells, Bacteroides, Eubacterium, Clostridium and Bifidobacterium, declined significantly (P < 0.05) from caecum to rectum, and were not affected by dietary treatments. Populations of Lactobacillus/ Enterococcus and E coli did not differ throughout the large intestine. The relative percent (%) contribution of each bacterial group to the total cell count did not differ between caecum and rectum, with the exception of Eubacterium that was higher in the AC digesta. FISH analysis showed that the sum of all bacterial groups made up a small percentage of the total cells, which was 12.4%, 21.8% and 10.3% in caecum, AC and rectum, respectively. This supports the view that in swine, the diversity of GI microflora might be higher compared to other species. In terms of microflora metabolic activity, the substantially higher numerical trends seen in FOS and TOS treatments regarding total volatile fatty acid, acetate concentrations and glycolytic activities, it could be postulated that FOS and TOS promoted saccharolytic activities in the porcine colon. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In nutritional sciences there is much interest in dietary modulation of the human gut. The gastrointestinal tract, particularly the colon, is very heavily populated with bacteria. Most bacteria are benign; however, certain gut species are pathogenic and may be involved in the onset of acute and chronic disorders. Bifidobacteria and lactobacilli are thought to be beneficial and are common targets for dietary intervention. Prebiotic is a non-viable food ingredient selectively metabolized by beneficial intestinal bacteria. Dietary modulation of the gut microflora by prebiotics is designed to improve health by stimulating numbers and/or activities of the bifidobacteria and lactobacilli. Having an 'optimal' gut microflora can increase resistance to pathogenic bacteria, lower blood ammonia, increase stimulation of the immune response and reduce the risk of cancer. This chapter examines how prebiotics are being applied to the improvement of human health and reviews the scientific evidence behind their use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One hundred and nine lactic acid bacterial strains (56 bifidobacteria-like and 53 lactobacilli-like) were isolated from faecal samples donated by healthy elderly individuals (>65 years old). Isolates were identified to species level by phenotypic analysis (by API) and by 16S rDNA sequencing. Eleven species of Lactobacillus and six species of Bifidobacterium were identified. The most frequently isolated lactobacillus was L. fermentum and the most frequently isolated bifidobacterium was closely related to B. infantis by 16S rDNA sequence alignment. The isolates were characterized for their antimicrobial activity against Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC) and Campylobacter jejuni. The lactobacilli displayed variations in their antimicrobial activity with few strains showing inhibitory activity against all pathogens. The bifidobacteria displayed higher levels of inhibitory activity against C. jejuni and Cl. difficile than against the E. coli strains. Keywords: Lactobacillus, Bifidobacterium, elderly, gastrointestinal microbiota, inhibition, Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC), Campylobacter jejuni.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have suggested that diets rich in polyphenols Such as flavonoids may lead to a reduced risk of gastrointestinal cancers. We demonstrate the ability of monomeric and dimeric flavanols to scavenge reactive nitrogen species derived from nitrous acid. Both epicatechin and dimer B2 (epicatechin dimer) inhibited nitrous acid-induced formation of 3-nitrotyrosine and the formation of the carcinogenic N-nitrosamine, N-nitrosodimethylamine. The reaction of monomeric and dimeric epicatechin with nitrous acid led to the formation of mono- and di-nitroso flavanols, whereas the reaction with hesperetin resulted primarily in the formation of nitrated products. Although, epicatechin was transferred across the jejunum of the small intestine yielding metabolites, its nitroso form was not absorbed. Dimer B2 but not epicatechin monomer inhibited the proliferation of, and triggered apoptosis in, Caco-2 cells. The latter was accompanied by caspase-3 activation and reductions in Akt phosphorylation, suggesting activation of apoptosis via inhibition of prosurvival signaling. Furthermore, the dinitroso derivative of dimer B2, and to a lesser extent the dinitroso-epicatechin, also induced significant toxic effects in Caco-2 cells. The inhibitory effects on cellular proliferation were paralleled by early inhibition of ERK 1/2 phosphorylation and later reductions in cyclin D I levels, indicating modulation of cell cycle regulation in Caco-2 cells. These effects highlight multiple routes in which dietary derived flavanols may exert beneficial effects in the gastrointestinal tract. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diet therapy utilizing probiotics and prebiotics may help treat many common gastrointestinal complaints. From birth to about 2 years of age the human digestive tract changes from sterile to a complex ecosystem with at least 500 bacterial species, most of these are benign and even necessary, however, pathogenic species also colonize the digestive tract. The idea is that prebiotics and probiotics can be used to displace and neutralise these pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional foods is an often-used term applied to dietary ingredients that serve to improve consumer health. Over the last few decades, these foods have gained in popularity with sales continuing to increase rapidly. Recent scientific, and some lay, reports have shown the popularity of both probiotics and prebiotics. These serve to elicit changes in the gut microbiota composition that increase populations of purported beneficial gut bacterial genera, for example, lactobacilli or bifidobacteria. Probiotics use live microbial feed additions, whereas prebiotics target indigenous flora components. As gastrointestinal disorders are prevalent in terms of human health, both probiotics and prebiotics serve an important role in the prophylactic management of various acute and chronic gut derived conditions. Examples include protection from gastroenteritis and some inflammatory conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Maillard reaction causes changes to protein structure and occurs in foods mainly during thermal treatment. Melanoidins, the final products of the Maillard reaction, may enter the gastrointestinal tract, which is populated by different species of bacteria. In this study, melanoidins were prepared from gluten and glucose. Their effect on the growth of faecal bacteria was determined in culture with genotype and phenotype probes to identify the different species involved. Analysis of peptic and tryptic digests showed that low molecular mass products are formed from the degradation of melanoidins. Results showed a change in the growth of bacteria. This in vitro study demonstrated that melanoidins, prepared from gluten and glucose, affect the growth of the gut microflora.