966 resultados para Gas- and particle PAHs
Resumo:
Electrocatalytic hydrogenation (HEC) may be compared to catalytic hydrogenation (HC). The difference between these methods is the hydrogen source: HC needs a hydrogen gas supply; HEC needs a source of protons (solvent) to be reduced at a cathode surface. HEC has presented interesting advances in the last decades due to investigation of the influence of the supporting electrolyte, co-solvent, surfactant, presence of inert gas and the composition of the electrode on the reaction. Several classes of organic compounds have been hydrogenated through HEC: olefins, ketones, aldehydes, aromatics, polyaromatics and nitro-compounds. This paper shows some details about the HEC which may be regarded as a promising technique for the hydrogenation of organic compounds both in industrial processes and in laboratories.
Resumo:
Diplomityön tavoitteena oli tutkia höyrykattiloiden leijukerrosten käytettävyysongelmia ja kirjallisuudesta löytyvien diagnostiikkamenetelmien toimivuutta leijukerroksen tilan ja käytettävyysongelmien tunnistamiseksi. Diagnostiikkamenetelmien toimivuutta testattiin VTT:n kiertoleijukoelaitteen prosessimittauksiin perustuen. Analysoinnissa käytettiin prosessimittauksia, jotka ovat yleisesti käytössä energiantuotannon leijukerroskattiloissa. Analysoitavina koeajotapauksina olivat kylmäkokeet partikkelikokojakaumaltaan vaihtelevalle leijutusmateriaalille, tuhkapartikkelien aiheuttama petimateriaalin karkeneminen ja agglomeroituminen, sekä vaihtelevien ajoarvojen vaikutus leijukerroksen hydrodynaamiseen käyttäytymiseen. Kokeellisesta osiosta saaduista tuloksista selvisi leijutusilman tilavuusvirran, petimassan ja partikkelikoon vaikutus analysoitavaan prosessimittaukseen. Tuloksista oli havaittavissa myös kiertävän petimateriaalin ja pohjapedin osuuksien vaikutus mitattuun painesignaaliin. Petipartikkelien agglomeroitumisen ja karkenemisen todettiin lisäävän kiertoleijukoelaitteistossa nousuputken pohjapedin määrää suhteessa kiertävään petimateriaaliin, mikä voitiin havaita painemittauksista.
Resumo:
Natriumhypokloriittia voidaan valmistaa kloorista ja lipeästä jatkuvatoimisessa absorberissa. Tässä työssä tutkittiin kokeellisesti, miten kaasun ja nesteen virtausnopeudet vaikuttavat täytekappalekolonnin tulvimiseen ja painehäviöön, kuinka nopeasti kloori absorboituu lipeään ja kuinka suuri hypokloriittiliuoksen kierrätys tarvitaan, ettei hypokloriitti ala hajota. Lisäksi luotiin matemaattinen malli, jolla voidaan mitoittaa jatkuvatoiminen vastavirtaperiaatteella toimiva natriumhypokloriittireaktori. Kloori–lipeäsysteemin havaittiin tulvivan suuremmilla virtausnopeuksilla kuin ilma–vesisysteemin. Tosin osa kloorista absorboituu jo ennen täytekappalekerrosta, minkä vuoksi kaasun todellinen virtausnopeus täytekappalekerroksen alaosassa on pienempi kuin mitattu arvo. Kolonnin painehäviö nousee erittäin jyrkästi tulvimispisteen läheisyydessä. Koska kloori absorboituu lähes täydellisesti ja vain kolonnin alaosa tulvii, voidaan kolonnia painehäviön kannalta operoida lähellä tulvimispistettä. Sekä mallinnuksen että koetulosten perusteella yli 99,99 % kloorista absorboituu koeolosuhteissa kahden metrin täytekappalekerroksessa. Nopea absorptio johtuu erittäin nopeasta, irreversiibelistä kloorin reaktiosta ja prosessille tyypillisestä natriumhydroksidikonversion rajoittamisesta alle 94 %:iin. Jotta varmistetaan, ettei hypokloriitti ala hajota, valmista hypokloriittiliuosta täytyy kierrättää kolonniin vähintään noin 4-kertainen määrä tuoreen lipeän syöttömäärän nähden.
Resumo:
Soodakattilan liuottajasäiliön hönkä on ongelmallinen kaasu sen sisältävän suuren vesihöyrypitoisuuden, pölyn sekä rikkiyhdisteiden vuoksi. Nykyisin sitä ei voida johtaa ilmakehään käsittelemättömänä. Tässä diplomityössä kuvatun järjestelmän avulla liuottajasäiliön hönkä hävitetään soodakattilan tulipesässä. Liuottajasäiliöstä tulevasta höngästä poistetaan kosteutta sekä kiintoaineita jäähdyttämällä sitä täytekappalepesurissa. Tähän diplomityöhön liittyen suunniteltiin koeohjelma. Kokeiden tarkoituksena on tarkastella sekä hönkäpesurin että koko järjestelmän toimintaa erilaisilla kaasun ja nesteen virtauksilla. Lisäksi koeohjelmaan otettiin mukaan höngän esipesurin, sulan hajotushöyryn ja kiertonesteen lämmönsiirtimen toiminnan vaikutus koko järjestelmään. Diplomityössä kuvattujen kokeiden tuloksia ei julkaista tässä työssä. Lopuksi työssä on tarkasteltu höngän ja kiertonesteen laadun vaikutusta täytekappalepesurin sekä koko järjestelmän toimintaan.
Resumo:
The first two papers in this series described the basic theory involved in supercritical fluid chromatography (SFC), how the technique evolved from gas and liquid chromatography and how the instrumentation was developed. Over the last two years, a commercial, dedicated packed-column SFC/MS instrument appeared on the market. The SFC continues to grow in use, with fundamental developments, coupled with a steady rise in the number of industrial users and applications.
Resumo:
Thermogravimetry was applied to investigate the effects of temperature and atmosphere on conversion of sulfur dioxide (SO2) absorbed by limestone. Ranges of temperature and particle size were studied, typical of fluidized-bed coal combustion. Isothermal experiments were performed at different temperatures (between 750 and 950 ºC) under local atmospheric pressure (~ 697 mmHg) in dynamic atmospheres of air and nitrogen. The maximum conversion was 29% higher in nitrogen atmosphere than in air atmosphere. The optimum conversion temperature was found at 831 ºC in air atmosphere and at 894 ºC in nitrogen atmosphere.
Resumo:
The RPC Detector Control System (RCS) is the main subject of this PhD work. The project, involving the Lappeenranta University of Technology, the Warsaw University and INFN of Naples, is aimed to integrate the different subsystems for the RPC detector and its trigger chain in order to develop a common framework to control and monitoring the different parts. In this project, I have been strongly involved during the last three years on the hardware and software development, construction and commissioning as main responsible and coordinator. The CMS Resistive Plate Chambers (RPC) system consists of 912 double-gap chambers at its start-up in middle of 2008. A continuous control and monitoring of the detector, the trigger and all the ancillary sub-systems (high voltages, low voltages, environmental, gas, and cooling), is required to achieve the operational stability and reliability of a so large and complex detector and trigger system. Role of the RPC Detector Control System is to monitor the detector conditions and performance, control and monitor all subsystems related to RPC and their electronics and store all the information in a dedicated database, called Condition DB. Therefore the RPC DCS system has to assure the safe and correct operation of the sub-detectors during all CMS life time (more than 10 year), detect abnormal and harmful situations and take protective and automatic actions to minimize consequential damages. The analysis of the requirements and project challenges, the architecture design and its development as well as the calibration and commissioning phases represent themain tasks of the work developed for this PhD thesis. Different technologies, middleware and solutions has been studied and adopted in the design and development of the different components and a big challenging consisted in the integration of these different parts each other and in the general CMS control system and data acquisition framework. Therefore, the RCS installation and commissioning phase as well as its performance and the first results, obtained during the last three years CMS cosmic runs, will be
Resumo:
Biomass was the dominating source of energy for human activities until the middle 19th century, when coal, oil, gas and other energy sources became increasingly important but it still represents ca. 10% of the worldwide energy supply. The major part of biomass for energy is still "traditional biomass" used as wood and coal extracted from native forests and thus non-sustainable, used with low efficiency for cooking and home heating, causing pollution problems. This use is largely done in rural areas and it is usually not supported by trading activities. There is now a strong trend to the modernization of biomass use, especially making alcohol from sugar cane thus replacing gasoline, or biodiesel to replace Diesel oil, beyond the production of electricity and vegetable coal using wood from planted forests. As recently as in 2004, sustainable "modern biomass" represented 2% of worldwide energy consumption. This article discusses the perspectives of the "first" and "second" technology generations for liquid fuel production, as well as biomass gaseification to make electricity or syngas that is in turn used in the Fischer-Tropsch process.
Resumo:
This work reports the development of polymeric nanocapsules containing lipoic acid prepared by interfacial deposition of poli(ε-caprolactona). The suspensions showed acid pH and encapsulation efficiencies from 77 to 90%. Zeta potential values were from -7.42 to -5.43 mV and particle sizes were lower than 340 nm with polidispersion lower than 0.3. The stability of nanocapsules within 28 days was evaluated in terms of pH, lipoic acid content, diameter, size distribution, zeta potential and measurements of relative light backscattering. The stability of formulations containing free lipoic acid was also evaluated. Nanoencapsulation drastically improved the physico-chemical stability of lipoic acid.
Resumo:
This work proposes an analytical procedure for direct determination of calcium, magnesium, manganese and zinc in buffalo milk by flame atomic absorption spectrometry (FAAS). Samples were diluted with a solution containing 10% (v/v) of water-soluble tertiary amines (CFA-C) at pH 8. For comparison, buffalo milk samples were digested with HNO3 and H2O2. According to a paired t-test, the results obtained in the determination of Ca, Mg, Mn and Zn in digested samples and in 10% (v/v) CFA-C medium were in agreement at a 95% confidence level. The developed procedure is simple, rapid, decrease the possibility of contamination and can be applied for the routine determination of Ca, Mg, Mn and Zn in buffalo milk samples without any difficulty caused by matrix constituents, such as fat content, and particle size distribution in the milk emulsion.
Resumo:
Alginate microparticles were prepared by an emulsion method aiming oral controlled release of antigens to fish. The effects of emulsification temperature and impeller type on particle morphology, average diameter, and size distribution were evaluated. Microparticles contaning formalin-killed Flavobacterium columnare cells (a model antigen) were prepared and characterized regarding bacterial release and particle stability when exposed to Nile tilapia (Oreochromis niloticus) typical gastrointestinal conditions. This methodology allowed the production of microparticles containing up to 14.3 g/L of bacterin, stable at a pH range from 2.0 to 9.0 for 12 h and smaller than 35 μm.
Resumo:
This work was performed to evaluate the distribution of metals Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the sediment surface in the Itaipu Lake-PR-Brazil. It was also performed to measurement the pH, phosphorus, organic carbon and particle size. In accordance of international criteria of quality of sediment, the results indicate an anthropogenic collaborations since some metals reached an excessive values. The factor of contamination was also used to evaluate the levels of contamination. The levels of Cu and Pb indicate a moderate contamination, so that it's possible to do harm to the balance of the ecosystem studied.
Resumo:
Russia has been one of the fastest developing economic areas in the world. Based on the GDP, the Russian economy grew evenly since the crisis in 1998 up till 2008. The growth in the gross domestic product has annually been some 5–10%. In 2007, the growth reached 8.1%, which is the highest figure after the 10% growth in 2000. Due to the growth of the economy and wage levels, purchasing power and consumption have been strongly increasing. The growing consumption has especially increased the imports of durables, such as passenger cars, domestic appliances and electronics. The Russian ports and infrastructure have not been able to satisfy the growing needs of exports and imports, which is why quite a large share of Russian foreign trade is going through third countries as transit transports. Finnish ports play a major role in transit transports to and from Russia. About 15% of the total value of Russian imports was transported through Finland in 2008. The economic recession that started in autumn 2008 and continues to date has had an impact on the economic development of Russia. The export income has decreased, mainly due to the reduced world market prices of energy products (oil and gas) and raw minerals. Investments have been postponed, getting credit is more difficult than before, and the ruble has weakened in relation to the euro and the dollar. The imports are decreasing remarkably, and are not forecast to reach the 2008 volumes even in 2012. The economic crisis is reflected in Finland's transit traffic. The volume of goods transported through Finland to and from Russia has decreased almost in the same proportion as the imports of goods to Russia. The biggest risk threatening the development of the Russian economy over long term is its dependence on export income from oil, gas, metals, minerals and forest products, as well as the trends of the world market prices of these products. Nevertheless, it is expected that the GDP of Russia will start to grow again in the forthcoming years due to the increased demand for energy products and raw minerals in the world. At the same time, it is obvious that the world market prices of these products will go up with the increasing demand. The increased income from exports will lead to a growth of imports, especially those of consumer goods, as the living standard of Russian citizens rises. The forecasts produced by the Russian Government concerning the economic development of Russia up till 2030 also indicate a shift in exported goods from raw materials to processed products, which together with energy products will become the main export goods of Russia. As a consequence, Russia may need export routes through third countries, which can be seen as an opportunity for increased transit transports through the ports of Finland. The ports competing with the ports of Finland for Russian foreign trade traffic are the Russian Baltic Sea ports and the ports of the Baltic countries. The strongest competitors are the Baltic Sea ports handling containers. On the Russian Baltic Sea, these ports include Saint Petersburg, Kaliningrad and, in the near future, the ports of Ust-Luga and possibly Vyborg. There are plans to develop Ust-Luga and Vyborg as modern container ports, which would become serious competitors to the Finnish ports. Russia is aiming to redirect as large a share as possible of foreign trade traffic to its own ports. The ports of Russia and the infrastructure associated with them are under constant development. On the other hand, the logistic capacity of Russia is not able to satisfy the continually growing needs of the Russian foreign trade. The capacity problem is emphasized by a structural incompatibility between the exports and imports in the Russian foreign trade. Russian exports can only use a small part of the containers brought in with imports. Problems are also caused by the difficult ice conditions and narrow waterways leading to the ports. It is predicted that Finland will maintain its position as a transit route for the Russian foreign trade, at least in the near future. The Russian foreign trade is increasing, and Russia will not be able to develop its ports in proportion with the increasing foreign trade. With the development of port capacity, cargo flows through the ports of Russia will grow. Structural changes in transit traffic are already visible. Firms are more and more relocating their production to Russia, for example as regards the assembly of cars and warehousing services. Simultaneously, an increasing part of transit cargoes are sent directly to Russia without unloading and reloading in Finland. New product groups have nevertheless been transported through Finland (textile products and tools), replacing the lost cargos. The global recession that started in autumn 2008 has influenced the volume of Russian imports and, consequently, the transit volumes of Finland, but the recession is not expected to be of long duration, and will thus only have a short-term impact on transit volumes. The Finnish infrastructure and services offered by the logistic chain should also be ready to react to the changes in imported product groups as well as to the change in Russian export products in the future. If the development plans of the Russian economy are realized, export products will be more refined, and the share of energy and raw material products will decrease. The other notable factor to be taken into consideration is the extremely fast-changing business environment in Russia. Operators in the logistic chain should be flexible enough to adapt to all kinds of changes to capitalise on business opportunities offered by the Russian foreign trade for the companies and for the transit volumes of Finnish ports, also in the future.
Resumo:
Coal, oil, natural gas, and shale gas are biomass that is formed millions of years ago. These are non-renewable and depleting, even considering the recent discovery of new sources of oil in the presalt and new technologies for the exploitation of shale deposits. Currently, these raw materials are used as a source of energy production and are also important for the production of fine chemicals. Since these materials are finite and their (oil) price is increasing, it is clear that there will be a progressive increase in the chemical industry to use renewable raw materials as a source of energy, an inevitable necessity for humanity. The major challenge for the society in the twenty first century is to unite governments, universities, research centers, and corporations to jointly act in all areas of science with one goal of finding a solution to global problems, such as conversion of biomass into compounds for the fine chemical industry.Non-renewable raw materials are used in the preparation of fuels, chemical intermediates, and derivatives for the fine chemical industry. However, their stock in nature has a finite duration, and their price is high and will likely increase with their depletion. In this scenario, the alternative is to use renewable biomass as a replacement for petrochemicals in the production of fine chemicals. As the production of biomass-based carbohydrates is the most abundant in nature, it is judicious to develop technologies for the generation of chain products (fuels, chemical intermediates, and derivatives for the fine chemicals industry) using this raw material. This paper presents some aspects and opportunities in the area of carbohydrate chemistry toward the generation of compounds for the fine chemical industry.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.