1000 resultados para Gamma radiation dose
Resumo:
The mutagenic effect of low linear energy transfer ionizing radiation is reduced for a given dose as the dose rate (DR) is reduced to a low level, a phenomenon known as the direct DR effect. Our reanalysis of published data shows that for both somatic and germ-line mutations there is an opposite, inverse DR effect, with reduction from low to very low DR, the overall dependence of induced mutations being parabolically related to DR, with a minimum in the range of 0.1 to 1.0 cGy/min (rule 1). This general pattern can be attributed to an optimal induction of error-free DNA repair in a DR region of minimal mutability (MMDR region). The diminished activation of repair at very low DRs may reflect a low ratio of induced (“signal”) to spontaneous background DNA damage (“noise”). Because two common DNA lesions, 8-oxoguanine and thymine glycol, were already known to activate repair in irradiated mammalian cells, we estimated how their rates of production are altered upon radiation exposure in the MMDR region. For these and other abundant lesions (abasic sites and single-strand breaks), the DNA damage rate increment in the MMDR region is in the range of 10% to 100% (rule 2). These estimates suggest a genetically programmed optimatization of response to radiation in the MMDR region.
Resumo:
Data from the HEGRA air shower array are used to set an upper limit on the emission of gamma-radiation above 25 (18) TeV from the direction of the radio bright region DR4 within the SNR G78.2 + 2.1 of 2.5 (7.1). 10^-13 cm^-2 sec^-1. The shock front of SNR G78.2 + 2.1 probably recently overtook the molecular cloud Gong 8 which then acts as a target for the cosmic rays produced within the SNR, thus leading to the expectation of enhanced gamma-radiation. Using a model of Drury, Aharonian and Völk which assumes that SNRs are the sources of galactic cosmic rays via first order Fermi acceleration, we calculated a theoretical prediction for the gamma-ray flux from the DR4 region and compared it with our experimental flux limit. Our 'best estimate' value for the predicted flux lies a factor of about 18 above the upper limit for gamma-ray energies above 25 TeV. Possible reasons for this discrepancy are discussed.