826 resultados para Gait recogntion
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Objective. To assess the reliability of physical examination of the osteoarthritic (OA) knee by rheumatologists, and to evaluate the benefits of standardization. Methods. Forty-two physical signs and techniques were evaluated using a 6 X 6 Latin square design. Patients with mild to severe knee OA, based on physical and radiographic signs, were examined in random order prior to and following standardization of techniques. For those signs with dichotomous scales, agreement among the rheumatologists was calculated as the prevalence-adjusted bias-adjusted kappa (PABAK), while for the signs with continuous and ordinal scales, a reliability coefficient (R-c) was calculated using analysis of variance. A PABAK of >0.60 and an Re of >0.80 were considered to indicate adequate reliability. Results. Adequate poststandardization reliability was achieved for 30 of 42 physical signs/techniques (71%). The most highly reliable signs identified by physical examination of the OA knee included alignment by goniometer (R-c = 0.99), bony swelling (R-c = 0.97), general passive crepitus (R-c = 0.96), gait by inspection (PABAK = 0.78), effusion bulge sign (R-c = 0.97), quadriceps atrophy (R. = 0.97), medial tibiofemoral tenderness (R-c = 0.94), lateral tibiofemoral tenderness (R-c = 0.85), patellofemoral tenderness by grind test (R-c = 0.94), and flexion contracture (R-c = 0.95). The standardization process resulted in substantial improvements in reliability for evaluation of a number of physical signs, although for some signs, minimal or no effect of standardization was noted. After standardization, warmth (PABAK = 0.14), medial instability at 30degrees flexion (PABAK = 0.02), and lateral instability at 30degrees flexion (PABAK = 0.34) were the only 3 signs that were highly unreliable. Conclusion. With the exception of physical examinations for instability, a comprehensive knee examination can be performed with adequate reliability. Standardization further improves the reliability for some physical signs and techniques. The application of these findings to future OA studies will contribute to improved outcome assessments in OA.
Resumo:
Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.
Resumo:
Alternative splicing is widespread in mammalian gene expression, and variant splice patterns are often specific to different stages of development, particular tissues or a disease state. There is a need to systematically collect data on alternatively spliced exons, introns and splice isoforms, and to annotate this data. The Alternative Splicing Database consortium has been addressing this need, and is committed to maintaining and developing a value-added database of alternative splice events, and of experimentally verified regulatory mechanisms that mediate splice variants. In this paper we present two of the products from this project: namely, a database of computationally delineated alternative splice events as seen in alignments of EST/cDNA sequences with genome sequences, and a database of alternatively spliced exons collected from literature. The reported splice events are from nine different organisms and are annotated for various biological features including expression states and cross-species conservation. The data are presented on our ASD web pages (http://www.ebi.ac.uk/asd).
Resumo:
Gait repertoires of the northern brown bandicoot, Isoodon macrourus, were studied over a wide range of locomotor speeds. At low relative speeds, bandicoots used symmetrical gaits that included pacing, trotting, and lateral sequence strides. Forefoot contact duration was generally shorter than hind foot contact duration at all speeds. At moderate relative speeds bandicoots used half-bounding gaits with either no period of suspension or with a short gathered suspension. At high speeds the predominant gait had both a short extended and a short gathered suspension, although some strides comprised only an extended suspension. Increases in speed were accompanied by increases in spinal extension, presumably leading to the extended suspensions. On a stationary treadmill individuals occasionally used a bipedal gait. Maximum half-bounding speeds appear to be relatively low in this species.
Resumo:
Background: Although a lowered medial longitudinal arch has been cited as a causal factor in plantar fasciitis, there is little experimental evidence linking arch motion to the pathogenesis of the condition. This study investigated the sagittal movement of the arch in subjects with and without plantar fasciitis during gait. Methods: Digital fluoroscopy was used to acquire dynamic lateral radiographs from 10 subjects with unilateral plantar fasciitis and 10 matched control subjects. The arch angle and the first metatarsophalangeal joint angle were digitized and their respective maxima recorded. Sagittal movement of the arch was defined as the angular change between heel strike and the maximum arch angle observed during the stance phase of gait. The-thickness of the proximal plantar fascia was determined from sagittal sonograms of both feet. ANOVA models were used to identify differences between limbs with respect to each dependent variable. Relationships between arch movement and fascial thickness were investigated using correlations. Results: There was no significant difference in either the movement or maximum arch angle between limbs. However, subjects with plantar fasciitis were found to have a larger metatarsophalangeal joint angle than controls (P < 0.05). Whereas the symptomatic and asymptomatic plantar fascia were thicker than those of control feet (P < 0.05), significant correlations were noted between fascial thickness and peak arch and metatarsophalangeal joint angles (P < 0.05) in the symptomatic limb only. Conclusions: Neither abnormal shape nor movement of the arch are associated with chronic plantar fasciitis. However, arch mechanics may influence the severity of plantar fasciitis once the condition is present. Digital flexion, in contrast, has a protective role in what might be a bilateral disease process.
Resumo:
In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion - supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.
Resumo:
Purpose: To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods: Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results: Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions: Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
Objective: To establish the relationship between poor lower limb somatosensory and circulatory status with standing balance, falls history, age and mobility level in dysvascular transtibial amputees (TTAs). Design: Within-subjects evaluation of somatosensation, circulation and stance balance measures in dysvascular transtibial amputees. Setting: Physiotherapy department of a tertiary metropolitan hospital in Australia. Participants: Twenty-two community-dwelling unilateral dysvascular transtibial amputee volunteers, aged between 54 and 86 recruited from a metropolitan hospital outpatient amputee clinic. Main outcome measures: Lower limb vibration sense, light touch sensation and circulatory status were related to centre of pressure excursion during quiet stance, dynamic balance measures of forward and lateral reach distance, and demographic information such as falls history and mobility level. Results: Overall, poor somatosensory status was associated with poor stance balance. There was an association between poor vibration and circulation and increased centre of pressure excursion in quiet stance and reduced reach distance, whereas poor light touch was linked with even weight-bearing in quiet stance. Poor vibration sense was associated with a history of frequent falls. Conclusions: Compromised lower limb somatosensation and circulation was linked with poor balance and a history of frequent falls in the elderly dysvascular amputee population.
Resumo:
Background Control of the trunk is critical for locomotor efficiency. However, investigations of trunk muscle activity and three-dimensional lumbo-pelvic kinematics during walking and running remain scarce. Methods. Gait parameters and three-dimensional lumbo-pelvic kinematics were recorded in seven subjects. Electromyography recordings of abdominal and paraspinal muscles were made using fine-wire and surface electrodes as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Findings. Kinematic data indicate that the amplitude but not timing of lumbo-pelvic motion changes with locomotor speed. Conversely, a change in locomotor mode is associated with temporal but not spatial adaptation in neuromotor strategy. That is, peak transverse plane lumbo-pelvic rotation occurs at foot strike during walking but prior to foot strike during running. Despite this temporal change, there is a strong correlation between the amplitude of transverse plane lumbo-pelvic rotation and stride length during walking and running. In addition, Jumbo-pelvic motion was asymmetrical during all locomotor tasks. Trunk muscle electromyography occurred biphasically in association with foot strike. Transversus abdominis was tonically active with biphasic modulation. Consistent with the kinematic data, electromyography activity of the abdominal muscles and the superficial fibres of multifidus increased with locomotor speed, and timing of peak activity of superficial multifidus and obliquus externus abdominis was modified in association with the temporal adaptation in lumbo-pelvic motion with changes in locomotor mode. Interpretation. These data provide evidence of the association between lumbo-pelvic motion and trunk muscle activity during locomotion at different speeds and modes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Vitamin D (calcitriol) is a nuclear transcription regulator acting via a nuclear hormone receptor (VDR). In addition to its role in the regulation of calcium and phosphate horneostasis and in bone formation, Vitamin D is also thought to be involved in brain function. The aim of this study was to behaviourally phenotype VDR knockout mice. We characterized the behaviour of VDR null mutant mice and wildtype littermate controls by subjecting them to a range of tests including a primary behavioural screen (using the SHIRPA protocol), rotarod, gait analysis, Y-maze, marble burying test, bedding test, holeboard test, elevated plus maze, open field test and prepulse inhibition of the acoustic startle response. There were no effects of genotype on most of the scores from the SHIRPA protocol except that VDR -/- mice had alopecia, were shorter and weighed less than VDR +/+ mice. VDR -/- mice had a shorter gait as well as impairments on the rotarod, in the bedding test and impaired habituation in both the open field and on the acoustic startle response. The VDR -/- mice had normal acoustic startle responses but had impaired PPI at long (256 ms) but not short (64 ms) prepulse to pulse intervals. The VDR -/- mice were less active in the open field and buried fewer marbles in the marble burying test. However, there were no differences in the time spent on the open arms of the elevated plus maze or in working memory as assessed by repeat arm entries on the Y-maze. Therefore, it appears that VDR -/- mice have muscular and motor impairments that significantly affects locomotor behaviour but seemingly no impairments in cognition as indicated by exploration, working memory or anxiety. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this presentation is to pay tribute to the life's work of Professor Vladimir Janda, a key figure in the 20th Century rehabilitation movement. An accomplished neurologist, he founded the rehabilitation department at Charles University Hospital in Prague, Czechoslovakia. He was one of the seminal members of the Prague school of manual medicine and rehabilitation that expanded its influence throughout Central and Eastern Europe. His observations regarding muscle imbalances, faulty posture and gait, and their association with chronic pain syndromes, etiologically, diagnostically, and therapeutically, influenced the rehabilitation world. The authors comprise a multinational, multiprofessional group representative of rehabilitation specialists around the world who would like to pay tribute and give a final word of thanks to this innovative educator, clinician, and author.
Resumo:
The GuRm is a 1.2m tall, 23 degree of freedom humanoid consuucted at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRw projcct is the development of appropriate learning strategies for control and coodinadon of the robot’s many joints. The development of learning strategies is Seen as a way to sidestep the inherent intricacy of modeling a multi-DOP biped robot. This paper outlines the approach taken to generate an appmpria*e control scheme for the joinis of the GuRoo. The paper demonsrrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-fonward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on thc CMAC architecture. Results from tats on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.
Resumo:
A 77-year-old man with 8 year progressive language deterioration in the face of grossly intact memory was followed. No acute or chronic physiological or psychological event was associated with symptom onset. CT revealed small left basal ganglia infarct. Mild atrophy, no lacunar infarcts, mild diffuse periventricular changes registered on MRI. Gait normal but slow. Speech hesitant and sparse. Affect euthymic; neurobehavioral disturbance absent. MMSE 26/30; clock incorrect, concrete. Neuropsychological testing revealed simple attention intact; complex attention, processing speed impaired. Visuospatial copying and delayed recall of copy average with some perseveration. Apraxia absent. Recall mildly impaired. Mild deficits in planning, organization apparent. Patient severely aphasic, dysarthric without paraphasias. Repetition of automatic speech, recitation moderately impaired; prosody intact. Understanding of written language, nonverbal communication abilities, intact. Frontal release signs developed over last 12 months. Repeated cognitive testing revealed mild deterioration across all domains with significant further decrease in expressive, receptive language. Neurobehavioral changes remain absent to date; he remains interested, engaged and independent in basic ADLs. Speech completely deteriorated; gait and movements appreciably slowed. Although signs of frontal/executive dysfunction present, lack of behavioral abnormalities, psychiatric disturbance, personality change argue against focal or progressive frontal impairment or dementia. Relative intactness of memory and comprehension argue against Alzheimer’s disease. Lack of findings on neuroimaging argue against CVA or tumor. It is possible that the small basal ganglia infarct has resulted in a mild lateral prefrontal syndrome. However, the absence of depression as well as the relatively circumscribed language problem suggests otherwise. The progressive, severe nature of language impairments, with relatively minor impairments in attention and memory, argues for a possible diagnosis of primary progressive aphasia.
Resumo:
This paper describes experiments conducted in order to simultaneously tune 15 joints of a humanoid robot. Two Genetic Algorithm (GA) based tuning methods were developed and compared against a hand-tuned solution. The system was tuned in order to minimise tracking error while at the same time achieve smooth joint motion. Joint smoothness is crucial for the accurate calculation of online ZMP estimation, a prerequisite for a closedloop dynamically stable humanoid walking gait. Results in both simulation and on a real robot are presented, demonstrating the superior smoothness performance of the GA based methods.