843 resultados para Gains in selection
Resumo:
Hardware constraints, which motivate receive antenna selection, also require that various antenna elements at the receiver be sounded sequentially to obtain estimates required for selecting the `best' antenna and for coherently demodulating data thereafter. Consequently, the channel state information at different antennas is outdated by different amounts and corrupted by noise. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, a preferable strategy is to linearly weight the channel estimates of different antennas differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then characterize explicitly the optimal selection weights that minimize the SEP. We also consider packet reception, in which multiple symbols of a packet are received by the same antenna. New suboptimal, but computationally efficient weighted selection schemes are proposed for reducing the packet error rate. The benefits of weighted selection are also demonstrated using a practical channel code used in third generation cellular systems. Our results show that optimal weighted selection yields a significant performance gain over conventional unweighted selection.
Resumo:
A common and practical paradigm in cooperative communication systems is the use of a dynamically selected `best' relay to decode and forward information from a source to a destination. Such systems use two phases - a relay selection phase, in which the system uses transmission time and energy to select the best relay, and a data transmission phase, in which it uses the spatial diversity benefits of selection to transmit data. In this paper, we derive closed-form expressions for the overall throughput and energy consumption, and study the time and energy trade-off between the selection and data transmission phases. To this end, we analyze a baseline non-adaptive system and several adaptive systems that adapt the selection phase, relay transmission power, or transmission time. Our results show that while selection yields significant benefits, the selection phase's time and energy overhead can be significant. In fact, at the optimal point, the selection can be far from perfect, and depends on the number of relays and the mode of adaptation. The results also provide guidelines about the optimal system operating point for different modes of adaptation. The analysis also sheds new insights on the fast splitting-based algorithm considered in this paper for relay selection.
Resumo:
The use of energy harvesting (EH) nodes as cooperative relays is a promising and emerging solution in wireless systems such as wireless sensor networks. It harnesses the spatial diversity of a multi-relay network and addresses the vexing problem of a relay's batteries getting drained in forwarding information to the destination. We consider a cooperative system in which EH nodes volunteer to serve as amplify-and-forward relays whenever they have sufficient energy for transmission. For a general class of stationary and ergodic EH processes, we introduce the notion of energy constrained and energy unconstrained relays and analytically characterize the symbol error rate of the system. Further insight is gained by an asymptotic analysis that considers the cases where the signal-to-noise-ratio or the number of relays is large. Our analysis quantifies how the energy usage at an EH relay and, consequently, its availability for relaying, depends not only on the relay's energy harvesting process, but also on its transmit power setting and the other relays in the system. The optimal static transmit power setting at the EH relays is also determined. Altogether, our results demonstrate how a system that uses EH relays differs in significant ways from one that uses conventional cooperative relays.
Resumo:
Process control systems are designed for a closed-loop peak magnitude of 2dB, which corresponds to a damping coefficient () of 0.5 approximately. With this specified constraint, the designer should choose and/or design the loop components to maintain a constant relative stability. However, the manipulative variable in almost all chemical processes will be the flow rate of a process stream. Since the gains and the time constants of the process will be functions of the manipulative variable, a constant relative stability cannot be maintained. Up to now, this problem has been overcome either by selecting proper control valve flow characteristics or by gain scheduling of controller parameters. Nevertheless, if a wrong control valve selection is made then one has to account for huge loss in controllability or eventually it may lead to an unstable control system. To overcome these problems, a compensator device that can bring back the relative stability of the control system was proposed. This compensator is similar to a dynamic nonlinear controller that has both online and offline information on several factors related to the control system. The design and analysis of the proposed compensator is discussed in this article. Finally, the performance of the compensator is validated by applying it to a two-tank blending process. It has been observed that by using a compensator in the process control system, the relative stability could be brought back to a great extent despite the effects of changes in manipulative flow rate.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
Resumo:
The accuracy of the initiator tRNA (tRNA(fMet)) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G-C base pairs in the anticodon stem of tRNA(fMet) contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNA(fMet) mutant wherein the three G-C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNA(fMet) mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNA(fMet) levels. Low cellular abundance of the chromosomally encoded tRNA(fMet) allows efficient initiation with the tRNA(fMet) mutant and an elongator tRNA(Gln), revealing that a high abundance of the cellular tRNA(fMet) is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNA(fMet) abundance in proteome remodeling.
Resumo:
A standardized in-house reference extract from the pollen of Parthenium hysterophorus, which is responsible for the high incidence of allergic rhinitis in India, was generated and examined by skin test, radio-allergosorbent test inhibition and isoelectric focusing. Parthenium reference allergen discs and positive reference serum were also generated. These reference reagents could not only be used for the quantitation of Parthenium-specific IgE in the sera of rhinitis patients but also for the evaluation of allergenic activity (relative potency and lot-to-lot variation) of different batches of Parthenium pollen.
Resumo:
1. Habitat selection is a universal aspect of animal ecology that has important fitness consequences and may drive patterns of spatial organisation in ecological communities. 2. Measurements of habitat selection have mostly been carried out on single species and at the landscape level. Quantitative studies examining microhabitat selection at the community level are scarce, especially in insects. 3. In this study, microhabitat selection in a natural assemblage of cricket species was examined for the first time using resource selection functions (RSF), an approach more commonly applied in studies of macrohabitat selection. 4. The availability and differential use of six microhabitats by 13 species of crickets inhabiting a tropical evergreen forest in southern India was examined. The six available microhabitats included leaf litter-covered ground, tree trunks, dead logs, brambles, understorey and canopy foliage. The area offered by the six microhabitats was estimated using standard methods of forest structure measurement. Of the six microhabitats, the understorey and canopy accounted for approximately 70% of the total available area. 5. The use of different microhabitats by the 13 species was investigated using acoustic sampling of crickets to locate calling individuals. Using RSF, it was found that of 13 cricket species examined, 10 showed 100% selection for a specific microhabitat. Of these, two species showed fairly high selection for brambles and dead logs, which were rare microhabitats, highlighting the importance of preserving all components of forest structure.
Resumo:
Antenna selection (AS) provides most of the benefits of multiple-antenna systems at drastically reduced hardware costs. In receive AS, the receiver connects a dynamically selected subset of N available antennas to the L available RF chains. The "best" subset to be used for data reception is determined by means of channel estimates acquired using training sequences. Due to the nature of AS, the channel estimates at different antennas are obtained from different transmissions of the pilot sequence, and are, thus, outdated by different amounts in a time-varying channel. We show that a linear weighting of the estimates is optimum for the subset selection process, where the weights are related to the temporal correlation of the channel variations. When L is not an integer divisor of N, we highlight a new issue of "training voids", in which the last pilot transmission is not fully exploited by the receiver. We present a "void-filling" method for fully exploiting these voids, which essentially provides more accurate training for some antennas, and derive the optimal subset selection rule for any void-filling method. We also derive new closed-form equations for the performance of receive AS with optimal subset selection.
Resumo:
Receive antenna selection (AS) provides many benefits of multiple-antenna systems at drastically reduced hardware costs. In it, the receiver connects a dynamically selected subset of N available antennas to the L available RF chains. Due to the nature of AS, the channel estimates at different antennas, which are required to determine the best subset for data reception, are obtained from different transmissions of the pilot sequence. Consequently, they are outdated by different amounts in a time-varying channel. We show that a linear weighting of the estimates is necessary and optimum for the subset selection process, where the weights are related to the temporal correlation of the channel variations. When L is not an integer divisor of N , we highlight a new issue of ``training voids'', in which the last pilot transmission is not fully exploited by the receiver. We then present new ``void-filling'' methods that exploit these voids and greatly improve the performance of AS. The optimal subset selection rules with void-filling, in which different antennas turn out to have different numbers of estimates, are also explicitly characterized. Closed-form equations for the symbol error probability with and without void-filling are also developed.
Resumo:
The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.
Resumo:
Sugars perform two vital functions in plants: as compatible solutes protecting the cell against osmotic stress and as mobile source of immediate and long-term energy requirement for growth and development. The two sugars that occur commonly in nature are sucrose and trehalose. Sucrose comprises one glucose and one fructose molecule; trehalose comprises two glucose molecules. Trehalose occurs in significant amounts in insects and fungi which greatly outnumber the plants. Surprisingly, in plants trehalose has been found in barely detectable amounts, if at all, raising the question `why did nature select sucrose instead of trehalose as the mobile energy source and as storage sugar for the plants'? Modelling revealed that when attached to the ribbon-shaped beta-1,4 glucan a trehalose molecule is shaped like a hook. This suggests that the beta-1,4 glucan chains with attached trehalose will fail to align to form inter-chain hydrogen bonds and coalesce into a cellulose microfibril, as a result of which in trehalose-accumulating plant cells, the cell wall will tend to become leaky. Thus in plants an evolutionary selection was made in favour of sucrose as the mobile energy source. Genetic engineering of plant cells for combating abiotic stresses through microbial trehalose-producing genes is fraught with risk of damage to plant cell walls.
Resumo:
Aqueous solutions of Al and Mg nitrates have been spray pyrolysed at 673 K to synthesize powders with compositions varying between MgO and MgAl2O4. This has been carried out with the aim of studying phase selection and phase evolution in this system. The powders have been subsequently heat treated and the sequence of phases characterised by X-ray diffraction and transmission electron microscopy. Metastable extensions of the different phase fields have been calculated based on functions which predict the equilibrium phase diagram accurately. The appearance of phases is closely related to the temperature and to the non-stoichiometry in different compositional ranges of the system. The sequence of phase evolution has been correlated to the thermodynamics of nucleation in the system.
Resumo:
Receive antenna selection (AS) has been shown to maintain the diversity benefits of multiple antennas while potentially reducing hardware costs. However, the promised diversity gains of receive AS depend on the assumptions of perfect channel knowledge at the receiver and slowly time-varying fading. By explicitly accounting for practical constraints imposed by the next-generation wireless standards such as training, packetization and antenna switching time, we propose a single receive AS method for time-varying fading channels. The method exploits the low training overhead and accuracy possible from the use of discrete prolate spheroidal (DPS) sequences based reduced rank subspace projection techniques. It only requires knowledge of the Doppler bandwidth, and does not require detailed correlation knowledge. Closed-form expressions for the channel prediction and estimation error as well as symbol error probability (SEP) of M-ary phase-shift keying (MPSK) for symbol-by-symbol receive AS are also derived. It is shown that the proposed AS scheme, after accounting for the practical limitations mentioned above, outperforms the ideal conventional single-input single-output (SISO) system with perfect CSI and no AS at the receiver and AS with conventional estimation based on complex exponential basis functions.
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].