953 resultados para GNRH AGONIST
Resumo:
Serotonin (5-HT1B) receptors play an essential role in the inhibition of aggressive behavior in rodents. CP-94,253, a 5-HT1B receptor agonist, can reduce aggression in male mice when administered directly into the ventro-orbitofrontal (VO) prefrontal cortex (PFC). The objective of the current study was to assess the effects of two selective 5-HT1B receptor agonists (CP-94,253 and CP-93,129), microinjected into the VO PFC, on maternal aggressive behavior after social instigation in rats. CP-94,253 (0.56 µg/0.2 µL, N = 8, and 1.0 µg/0.2 µL, N = 8) or CP-93,129 (1.0 µg/0.2 µL, N = 9) was microinjected into the VO PFC of Wistar rats on the 9th day postpartum and 15 min thereafter the aggressive behavior by the resident female against a male intruder was recorded for 10 min. The frequency and duration of aggressive and non-aggressive behaviors were analyzed using ANOVA and post hoc tests. CP-93,129 significantly decreased maternal aggression. The frequency of lateral attacks, bites and pinnings was reduced compared to control, while the non-aggressive behaviors and maternal care were largely unaffected by this treatment. CP-94,253 had no significant effects on aggressive or non-aggressive behaviors when microinjected into the same area of female rats. CP-93,129, a specific 5-HT1B receptor agonist, administered into the VO PFC reduced maternal aggressive behavior, while the CP-94,253 agonist did not significantly affect this behavior after social instigation in female rats. We conclude that only the 5-HT1B receptor agonist CP-93,129 administered into the VO PFC decreased aggression in female rats postpartum after social instigation.
Resumo:
The objective of the present study was to investigate the effects of the direct addition of pentoxifylline (PF) to the ejaculates of men with poor sperm quality before freezing on post-thaw sperm motility, viability, acrosome integrity, and agonist-induced acrosome reaction. Semen specimens from 16 infertile men with impaired sperm count and motility (oligoasthenozoospermia) were divided into two equal aliquots: one received no treatment (control) while the other was incubated with 5 mM PF (treated). Both aliquots were cryopreserved by the liquid nitrogen vapor method. Motility was assessed according to WHO criteria. Acrosome integrity and spontaneous and calcium ionophore-induced acrosome reactions were assessed with fluorescein isothiocyanate-conjugated peanut agglutinin combined with a supra-vital dye (Hoechst-33258). Cryopreservation impaired sperm motility (percentage reduction: 87.4 (interquartile range, IQ: 70.3-92.9) vs 89.1 (IQ: 72.7-96.0%)), viability (25.9 (IQ: 22.2-29.7) vs 25.6 (IQ: 19.7-40.3%)) and acrosome integrity (18.9 (IQ: 5.4-38.9) vs 26.8 (IQ: 0.0-45.2%)) to the same extent in both treated and control aliquots. However, PF treatment before freezing improved the acrosome reaction to ionophore challenge test scores in cryopreserved spermatozoa (9.7 (IQ: 6.6-19.7) vs 4.8 (IQ: 0.5-6.8%); P = 0.002). These data show that pre-freeze treatment of poor quality human sperm with pentoxifylline did not improve post-thaw motility or viability nor did it prevent acrosomal loss during the freeze-thaw process. However, PF, as used, improved the ability of thawed spermatozoa to undergo the acrosome reaction in response to calcium ionophore. The present data indicate that treatment of poor quality human sperm with PF may enhance post-thaw sperm fertilizing ability.
Resumo:
Dipyrone (Dp) delays gastric emptying (GE) in rats. There is no information about whether 4-aminoantipyrine (AA), one of its metabolites, has the same effect. The objectives of the present study were to assess the effects of AA and Dp on GE when administered intravenously (iv) and intracerebroventricularly (icv) (240 µmol/kg and 4 µmol/animal, respectively) and on gastric compliance when administered iv (240 µmol/kg). GE was determined in male Wistar rats weighing 250-300 g (5-10 per group) after icv or iv injection of the drug by measuring percent gastric retention (GR) of a saline meal labeled with phenol red 10 min after administration by gavage. Gastric compliance was estimated in anesthetized rats (10-11 per group), with the construction of volume-pressure curves during intragastric infusion of a saline meal. Compliance was significantly greater in animals receiving Dp (mean ± SEM = 0.26 ± 0.009 mL/mmHg) and AA (0.24 ± 0.012 mL/mmHg) than in controls (0.19 ± 0.009 mL/mmHg). AA and Dp administered iv significantly increased GR (64.4 ± 2.5 and 54.3 ± 3.8%, respectively) compared to control (34 ± 2.2%), a phenomenon observed only with Dp after icv administration. Subdiaphragmatic vagotomy reduced the effect of AA (GR = 31.4 ± 1.5%) compared to sham-treated animals. Baclofen, a GABA B receptor agonist, administered icv significantly reduced the effect of AA (GR = 28.1 ± 1.3%). We conclude that Dp and AA increased gastric compliance and AA delayed GE, with the participation of the vagus nerve, through a pathway that does not involve a direct action of the drug on the central nervous system.
Resumo:
We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.
Resumo:
Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have a far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand-binding domain and for subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction to the insight gained from X-ray crystallography and nuclear magnetic resonance investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer to study the behavior of the isolated ligand-binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation.
Resumo:
Sleep disturbance is among the many consequences of ethanol abuse in both humans and rodents. Ethanol consumption can reduce REM or paradoxical sleep (PS) in humans and rats, respectively. The first aim of this study was to develop an animal model of ethanol-induced PS suppression. This model administered intragastrically (by gavage) to male Wistar rats (3 months old, 200-250 g) 0.5 to 3.5 g/kg ethanol. The 3.5 g/kg dose of ethanol suppressed the PS stage compared with the vehicle group (distilled water) during the first 2-h interval (0-2 h; 1.3 vs 10.2; P < 0.001). The second aim of this study was to investigate the mechanisms by which ethanol suppresses PS. We examined the effects of cholinergic drug pretreatment. The cholinergic system was chosen because of the involvement of cholinergic neurotransmitters in regulating the sleep-wake cycle. A second set of animals was pretreated with 2.5, 5.0, and 10 mg/kg pilocarpine (cholinergic agonist) or atropine (cholinergic antagonist). These drugs were administered 1 h prior to ethanol (3.5 g/kg) or vehicle. Treatment with atropine prior to vehicle or ethanol produced a statistically significant decrease in PS, whereas pilocarpine had no effect on minutes of PS. Although the mechanism by which ethanol induces PS suppression is not fully understood, these data suggest that the cholinergic system is not the only system involved in this interaction.
Resumo:
Besides other physiological functions, adenosine-5'-triphosphate (ATP) is also a neurotransmitter that acts on purinergic receptors. In spite of the presence of purinergic receptors in forebrain areas involved with fluid-electrolyte balance, the effect of ATP on water intake has not been investigated. Therefore, we studied the effects of intracerebroventricular (icv) injections of ATP (100, 200 and 300 nmol/µL) alone or combined with DPCPX or PPADS (P1 and P2 purinergic antagonists, respectively, 25 nmol/µL) on water intake induced by water deprivation. In addition, the effect of icv ATP was also tested on water intake induced by intragastric load of 12% NaCl (2 mL/rat), acute treatment with the diuretic/natriuretic furosemide (20 mg/kg), icv angiotensin II (50 ng/µL) or icv carbachol (a cholinergic agonist, 4 nmol/µL), on sodium depletion-induced 1.8% NaCl intake, and on food intake induced by food deprivation. Male Holtzman rats (280-320 g, N = 7-11) had cannulas implanted into the lateral ventricle. Icv ATP (300 nmol/µL) reduced water intake induced by water deprivation (13.1 ± 1.9 vs saline: 19.0 ± 1.4 mL/2 h; P < 0.05), an effect blocked by pre-treatment with PPADS, but not DPCPX. Icv ATP also reduced water intake induced by NaCl intragastric load (5.6 ± 0.9 vs saline: 10.3 ± 1.4 mL/2 h; P < 0.05), acute furosemide treatment (0.5 ± 0.2 vs saline: 2.3 ± 0.6 mL/15 min; P < 0.05), and icv angiotensin II (2.2 ± 0.8 vs saline: 10.4 ± 2.0 mL/2 h; P < 0.05), without changing icv carbachol-induced water intake, sodium depletion-induced 1.8% NaCl intake and food deprivation-induced food intake. These data suggest that central ATP, acting on purinergic P2 receptors, reduces water intake induced by intracellular and extracellular dehydration.
Resumo:
Growing consistent evidence indicates that hypofunction of N-methyl-D-aspartate (NMDA) transmission plays a pivotal role in the neuropathophysiology of schizophrenia. Hence, drugs which modulate NMDA neurotransmission are promising approaches to the treatment of schizophrenia. The aim of this article is to review clinical trials with novel compounds acting on the NMDA receptor (NMDA-R). This review also includes a discussion and translation of neuroscience into schizophrenia therapeutics. Although the precise mechanism of action of minocycline in the brain remains unclear, there is evidence that it blocks the neurotoxicity of NMDA antagonists and may exert a differential effect on NMDA signaling pathways. We, therefore, hypothesize that the effects of minocycline on the brain may be partially modulated by the NMDA-R or related mechanisms. Thus, we have included a review of minocycline neuroscience. The search was performed in the PubMed, Web of Science, SciELO, and Lilacs databases. The results of glycine and D-cycloserine trials were conflicting regarding effectiveness on the negative and cognitive symptoms of schizophrenia. D-serine and D-alanine showed a potential effect on negative symptoms and on cognitive deficits. Sarcosine data indicated a considerable improvement as adjunctive therapy. Finally, minocycline add-on treatment appears to be effective on a broad range of psychopathology in patients with schizophrenia. The differential modulation of NMDA-R neurosystems, in particular synaptic versus extrasynaptic NMDA-R activation and specific subtypes of NMDA-R, may be the key mediators of neurogenesis and neuroprotection. Thus, psychotropics modulating NMDA-R neurotransmission may represent future monotherapy or add-on treatment strategies in the treatment of schizophrenia.
Resumo:
Sepsis involves a systemic inflammatory response of multiple endogenous mediators, resulting in many of the injurious and sometimes fatal physiological symptoms of the disease. This systemic activation leads to a compromised vascular response and endothelial dysfunction. Purine nucleotides interact with purinoceptors and initiate a variety of physiological processes that play an important role in maintaining cardiovascular function. The purpose of the present study was to investigate the effects of ATP on vascular function in a lipopolysaccharide (LPS) model of sepsis. LPS induced a significant increase in aortic superoxide production 16 h after injection. Addition of ATP to the organ bath incubation solution reduced superoxide production by the aortas of endotoxemic animals. Reactive Blue, an antagonist of the P2Y receptor, blocked the effect of ATP on superoxide production, and the nonselective P2Y agonist MeSATP inhibited superoxide production. Nitric oxide synthase (NOS) inhibition by L-NAME blocked vascular relaxation and reduced superoxide production in LPS-treated animals. In the presence of L-NAME there was no ATP effect on superoxide production. A vascular reactivity study showed that ATP increased maximal relaxation in LPS-treated animals compared to controls. The presence of ATP induced increases in Akt and endothelial NOS phosphorylated proteins in the aorta of septic animals. ATP reduces superoxide release resulting in an improved vasorelaxant response. Sepsis may uncouple NOS to produce superoxide. We showed that ATP through Akt pathway phosphorylated endothelial NOS and “re-couples” NOS function.
Resumo:
Agmatine has neuroprotective effects on retinal ganglion cells (RGCs) as well as cortical and spinal neurons. It protects RGCs from oxidative stress even when it is not present at the time of injury. As agmatine has high affinity for various cellular receptors, we assessed protective mechanisms of agmatine using transformed RGCs (RGC-5 cell line). Differentiated RGC-5 cells were pretreated with 100 μM agmatine and consecutively exposed to 1.0 mM hydrogen peroxide (H2O2). Cell viability was determined by measuring lactate dehydrogenase (LDH), and the effects of selective alpha 2-adrenergic receptor antagonist yohimbine (0-500 nM) and N-methyl-D-aspartic acid (NMDA) receptor agonist NMDA (0-100 µM) were evaluated. Agmatine’s protective effect was compared to a selective NMDA receptor antagonist MK-801. After a 16-h exposure to H2O2, the LDH assay showed cell loss greater than 50%, which was reduced to about 30% when agmatine was pretreated before injury. Yohimbine almost completely inhibited agmatine’s protective effect, but NMDA did not. In addition, MK-801 (0-100 µM) did not significantly attenuate the H2O2-induced cytotoxicity. Our results suggest that neuroprotective effects of agmatine on RGCs under oxidative stress may be mainly attributed to the alpha 2-adrenergic receptor signaling pathway.
Resumo:
Tolerance to lipopolysaccharide (LPS) occurs when animals or cells exposed to LPS become hyporesponsive to a subsequent challenge with LPS. This mechanism is believed to be involved in the down-regulation of cellular responses observed in septic patients. The aim of this investigation was to evaluate LPS-induced monocyte tolerance of healthy volunteers using whole blood. The detection of intracellular IL-6, bacterial phagocytosis and reactive oxygen species (ROS) was determined by flow cytometry, using anti-IL-6-PE, heat-killed Staphylococcus aureus stained with propidium iodide and 2',7'-dichlorofluorescein diacetate, respectively. Monocytes were gated in whole blood by combining FSC and SSC parameters and CD14-positive staining. The exposure to increasing LPS concentrations resulted in lower intracellular concentration of IL-6 in monocytes after challenge. A similar effect was observed with challenge with MALP-2 (a Toll-like receptor (TLR)2/6 agonist) and killed Pseudomonas aeruginosa and S. aureus, but not with flagellin (a TLR5 agonist). LPS conditioning with 15 ng/mL resulted in a 40% reduction of IL-6 in monocytes. In contrast, phagocytosis of P. aeruginosa and S. aureus and induced ROS generation were preserved or increased in tolerant cells. The phenomenon of tolerance involves a complex regulation in which the production of IL-6 was diminished, whereas the bacterial phagocytosis and production of ROS was preserved. Decreased production of proinflammatory cytokines and preserved or increased production of ROS may be an adaptation to control the deleterious effects of inflammation while preserving antimicrobial activity.
Resumo:
The medial hypothalamus is part of a neurobiological substrate controlling defensive behavior. It has been shown that a hypothalamic nucleus, the dorsomedial hypothalamus (DMH), is involved in the regulation of escape, a defensive behavior related to panic attacks. The role played by the DMH in the organization of conditioned fear responses, however, is less clear. In the present study, we investigated the effects of reversible inactivation of the DMH with the GABA A agonist muscimol on inhibitory avoidance acquisition and escape expression by male Wistar rats (approximately 280 g in weight) tested in the elevated T-maze (ETM). In the ETM, inhibitory avoidance, a conditioned defensive response, has been associated with generalized anxiety disorder. Results showed that intra-DMH administration of the GABA A receptor agonist muscimol inhibited escape performance, suggesting an antipanic-like effect (P < 0.05), without changing inhibitory avoidance acquisition. Although a higher dose of muscimol (1.0 nmol/0.2 µL; N = 7) also altered locomotor activity in an open field when compared to control animals (0.2 µL saline; N = 13) (P < 0.05), the lower dose (0.5 nmol/0.2 µL; N = 12) of muscimol did not cause any motor impairment. These data corroborate previous evidence suggesting that the DMH is specifically involved in the modulation of escape. Dysfunction of this regulatory mechanism may be relevant in the genesis/maintenance of panic disorder.
Resumo:
The signaling lymphocytic activation molecule (SLAM), present on the surface of hematopoietic cells, can regulate some events of the immune responses. This modulatory action is associated with the capacity of SLAM to interact with an intracytoplasmic adapter, such as SLAM-associated protein (SAP). SLAM is constitutively expressed in most of these cells, is rapidly induced after antigenic or inflammatory stimuli, and participates in the immunological synapse. Defects in the function of the SLAM-SAP pathway contribute to immunological abnormalities, resulting in autoimmune diseases, tumors of the lymphoid tissues and inadequate responses to infectious agents. Initially, the role of SLAM was investigated using an anti-SLAM monoclonal antibody (α-SLAM mAb) identified as an agonist of the SLAM-SAP pathway, which could induce the production of interferon-γ and could redirect the immune response to a T helper 1 (Th1) cell profile. However, in this review we postulate that the SLAM-SAP pathway primarily induces a Th2 response and secondarily suppresses the Th1 response.
Resumo:
The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.
Resumo:
This study examined the food intake changes evoked by intracerebroventricular (icv) injection of a selective agonist (BRL37344, 2 and 20 nmol) or antagonist (SR59230A, 10 and 50 nmol) of β3-adrenergic receptors in 24-h fasted rats (adult male Wistar rats, 200-350 g, N = 6/treatment). The animals were also pretreated with saline icv (SAL) or SR59230A (50 nmol) followed by BRL37344 (20 nmol) or SAL in order to determine the selectivity of the effects evoked by BRL37344 on food intake or the selectivity of the effects evoked by SR59230A on risk assessment (RA) behavior. The highest dose of BRL37344 (N = 7) decreased food intake 1 h after the treatment (6.4 ± 0.5 g in SAL-treated vs 4.2 ± 0.8 g in drug-treated rats). While both doses of SR59230A failed to affect food intake (5.1 ± 1.1 g for 10 nmol and 6.0 ± 1.8 g for 50 nmol), this treatment reduced the RA frequency (number/30 min) (4 ± 2 for SAL-treated vs 1 ± 1 for 10 nmol and 0.5 ± 1 for 50 nmol SR59230A-treated rats), an ethological parameter related to anxiety. While pretreatment with SR59230A (7.0 ± 0.5 g) abolished the hypophagia induced by BRL37344 (3.6 ± 0.9 g), BRL37344 suppressed the reduction in RA frequency caused by SR59230A. These results show that the hypophagia caused by BRL37344 is selectively mediated by β3-adrenergic receptors within the central nervous system. Moreover, they suggest the involvement of these receptors in the control of anxiety.