902 resultados para GENERIC SIMPLICITY
Resumo:
The possibility of effective control of the wetting properties of a nanostructured surface consisting of arrays of amorphous carbon nanoparticles capped on carbon nanotubes using the electrowetting technique is demonstrated. By analyzing the electrowetting curves with an equivalent circuit model of the solid/liquid interface, the long-standing problem of control and monitoring of the transition between the "slippy" Cassie state and the "sticky" Wenzel states is resolved. The unique structural properties of the custom-designed nanocomposites with precisely tailored surface energy without using any commonly utilized low-surface-energy (e.g., polymer) conformal coatings enable easy identification of the occurrence of such transition from the optical contrast on the nanostructured surfaces. This approach to precise control of the wetting mode transitions is generic and has an outstanding potential to enable the stable superhydrophobic capability of nanostructured surfaces for numerous applications, such as low-friction microfluidics and self-cleaning.
Resumo:
The results of numerical simulations of nanometer precision distributions of microscopic ion fluxes in ion-assisted etching of nanoscale features on the surfaces of dielectric materials using a self-assembled monolayer of spherical nanoparticles as a mask are presented. It is shown that the ion fluxes to the substrate and nanosphere surfaces can be effectively controlled by the plasma parameters and the external bias applied to the substrate. By proper adjustment of these parameters, the ion flux can be focused onto the areas uncovered by the nanospheres. Under certain conditions, the ion flux distributions feature sophisticated hexagonal patterns, which may lead to very different nanofeature etching profiles. The results presented are generic and suggest viable ways to overcome some of the limitations of the existing plasma-assisted nanolithography.
Resumo:
Selective and controlled deposition of plasma-grown nanoparticles is one of the pressing problems of plasma-aided nanofabrication. The results of advanced numerical simulations of motion of charge-variable nanoparticles in the plasma presheath and sheath areas and in localized microscopic electric fields created by surface microstructures are reported. Conditions for site-selective deposition of such nanoparticles onto individual microstructures and open surface areas within a periodic micropattern are formulated. The effects of plasma parameters, surface potential, and micropattern features on nanoparticle deposition are investigated and explained using particle charging and plasma force arguments. The results are generic and applicable to a broad range of nanoparticle-generating plasmas and practical problems ranging from management of nanoparticle contamination in microelectronics to site-selective nanoparticle deposition into specified device locations, and synthesis of advanced microporous materials and nanoparticle superlattices. © 2007 American Institute of Physics.
Resumo:
Uniformity of postprocessing of large-area, dense nanostructure arrays is currently one of the greatest challenges in nanoscience and nanofabrication. One of the major issues is to achieve a high level of control in specie fluxes to specific surface areas of the nanostructures. As suggested by the numerical experiments in this work, this goal can be achieved by manipulating microscopic ion fluxes by varying the plasma sheath and nanorod array parameters. The dynamics of ion-assisted deposition of functional monolayer coatings onto two-dimensional carbon nanorod arrays in a hydrogen plasma is simulated by using a multiscale hybrid numerical simulation. The numerical results show evidence of a strong correlation between the aspect ratios and nanopattern positioning of the nanorods, plasma sheath width, and densities and distributions of microscopic ion fluxes. When the spacing between the nanorods and/or their aspect ratios are larger, and/or the plasma sheath is wider, the density of microscopic ion current flowing to each of the individual nanorods increases, thus reducing the time required to apply a functional monolayer coating down to 11 s for a 7-μm-wide sheath, and to 5 s for a 50-μm-wide sheath. The computed monolayer coating development time is consistent with previous experimental reports on plasma-assisted functionalization of related carbon nanostructures [B. N. Khare et al., Appl. Phys. Lett. 81, 5237 (2002)]. The results are generic in that they can be applied to a broader range of plasma-based processes and nanostructures, and contribute to the development of deterministic strategies of postprocessing and functionalization of various nanoarrays for nanoelectronic, biomedical, and other emerging applications.
Resumo:
This contribution is focused on plasma-enhanced chemical vapor deposition systems and their unique features that make them particularly attractive for nanofabrication of flat panel display microemitter arrays based on ordered patterns of single-crystalline carbon nanotip structures. The fundamentals of the plasma-based nanofabrication of carbon nanotips and some other important nanofilms and nanostructures are examined. Specific features, challenges, and potential benefits of using the plasma-based systems for relevant nanofabrication processes are analyzed within the framework of the "plasma-building unit" approach that builds up on extensive experimental data on plasma diagnostics and nanofilm/nanostructure characterization, and numerical simulation of the species composition in the ionized gas phase (multicomponent fluid models), ion dynamics and interaction with ordered carbon nanotip patterns, and ab initio computations of chemical structure of single crystalline carbon nanotips. This generic approach is also applicable for nanoscale assembly of various carbon nanostructures, semiconductor quantum dot structures, and nano-crystalline bioceramics. Special attention is paid to most efficient control strategies of the main plasma-generated building units both in the ionized gas phase and on nanostructured deposition surfaces. The issues of tailoring the reactive plasma environments and development of versatile plasma nanofabrication facilities are also discussed.
Resumo:
The means of reducing nanoparticle contamination in the synthesis of carbon nanostructures in reactive Ar + H2 + CH4 plasmas are studied. It is shown that by combining the electrostatic filtering and thermophoretic manipulation of nanoparticles, one can significantly improve the quality of carbon nanopatterns. By increasing the substrate heating power, one can increase the size of deposited nanoparticles and eventually achieve nanoparticle-free nanoassemblies. This approach is generic and is applicable to other reactive plasma-aided nanofabrication processes.
Resumo:
A generic approach towards tailoring of ion species composition in reactive plasmas used for nanofabrication of various functional nanofilms and nanoassemblies, based on a simplified model of a parallel-plate rf discharge, is proposed. The model includes an idealized reactive plasma containing two neutral and two ionic species interacting via charge exchange collisions in the presence of a microdispersed solid component. It is shown that the number densities of the desired ionic species can be efficiently managed by adjusting the dilution of the working gas in a buffer gas, rates of electron impact ionization, losses of plasma species on the discharge walls, and surfaces of fine particles, charge exchange rates, and efficiency of three-body recombination processes in the plasma bulk. The results are relevant to the plasma-aided nanomanufacturing of ordered patterns of carbon nanotip and nanopyramid microemitters.
Resumo:
This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck-boost power conversion to be performed over a wide modulation range with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye- or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter. Modulation-wise, the dual inverter can be controlled using a carefully designed carrier-based pulse-width modulation (PWM) scheme that always will ensure balanced voltage boosting of the Z-source network, while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays in the dual inverter PWM scheme, its switched common-mode voltage can be completely eliminated, unlike in traditional inverters where narrow common-mode spikes are still generated. Under semiconductor failure conditions, the presented PWM schemes can easily be modified to allow the inverter to operate without interruption and for cases where two isolated sources are used, zero common-mode voltage can still be ensured. These theoretical findings together with the inverter practicality have been confirmed both in simulations using PSIM with Matlab/Simulink coupler and experimentally using a laboratory implemented inverter prototype.
Resumo:
This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck-boost power conversion to be performed over a wide modulation range, with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye-or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter. Modulationwise, the dual inverter can be controlled using a carefully designed carrier-based pulsewidth-modulation (PWM) scheme that will always ensure balanced voltage boosting of the Z-source network while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays in the dual-inverter PWM scheme, its switched common-mode voltage can be completely eliminated, unlike in traditional inverters, where narrow common-mode spikes are still generated. Under semiconductor failure conditions, the presented PWM schemes can easily be modified to allow the inverter to operate without interruption, and for cases where two isolated sources are used, zero common-mode voltage can still be ensured. These theoretical findings, together with the inverter practicality, have been confirmed in simulations both using PSIM with Matlab/Simulink coupler and experimentally using a laboratory-implemented inverter prototype.
Resumo:
Internet and its widespread usage for multimedia document distribution put the copyright issue in a complete new setting. Multimedia documents, specifically those installed on a web page, are no longer passive as they typically include active applets. Copyright protection safeguards the intellectual property (IP) of multimedia documents, which are either sold or distributed free of charge. In this Chapter, the basic tools for copyright protection are discussed. First, general concepts and the vocabulary used in copyright protection of multimedia documents are discussed. Later, taxonomy of watermarking and fingerprinting techniques are studied. This part is concluded by a review of the literature dealing with IP security. The main part of the chapter discusses the generic watermarking scheme and illustrates it on three specific examples: collusion-free watermarking, spread spectrum watermarking, and software fingerprinting. Future trends and conclusions close the chapter.
Resumo:
The power of sharing computation in a cryptosystem is crucial in several real-life applications of cryptography. Cryptographic primitives and tasks to which threshold cryptosystems have been applied include variants of digital signature, identification, public-key encryption and block ciphers etc. It is desirable to extend the domain of cryptographic primitives which threshold cryptography can be applied to. This paper studies threshold message authentication codes (threshold MACs). Threshold cryptosystems usually use algebraically homomorphic properties of the underlying cryptographic primitives. A typical approach to construct a threshold cryptographic scheme is to combine a (linear) secret sharing scheme with an algebraically homomorphic cryptographic primitive. The lack of algebraic properties of MACs rules out such an approach to share MACs. In this paper, we propose a method of obtaining a threshold MAC using a combinatorial approach. Our method is generic in the sense that it is applicable to any secure conventional MAC by making use of certain combinatorial objects, such as cover-free families and their variants. We discuss the issues of anonymity in threshold cryptography, a subject that has not been addressed previously in the literature in the field, and we show that there are trade-offis between the anonymity and efficiency of threshold MACs.
Resumo:
Vehicular Ad-hoc Networks (VANETs) can make roads safer, cleaner, and smarter. It can offer a wide range of services, which can be safety and non-safety related. Many safety-related VANETs applications are real-time and mission critical, which would require strict guarantee of security and reliability. Even non-safety related multimedia applications, which will play an important role in the future, will require security support. Lack of such security and privacy in VANETs is one of the key hindrances to the wide spread implementations of it. An insecure and unreliable VANET can be more dangerous than the system without VANET support. So it is essential to make sure that “life-critical safety” information is secure enough to rely on. Securing the VANETs along with appropriate protection of the privacy drivers or vehicle owners is a very challenging task. In this work we summarize the attacks, corresponding security requirements and challenges in VANETs. We also present the most popular generic security policies which are based on prevention as well detection methods. Many VANETs applications require system-wide security support rather than individual layer from the VANETs’ protocol stack. In this work we will review the existing works in the perspective of holistic approach of security. Finally, we will provide some possible future directions to achieve system-wide security as well as privacy-friendly security in VANETs.
Resumo:
Dealing with digital medical images is raising many new security problems with legal and ethical complexities for local archiving and distant medical services. These include image retention and fraud, distrust and invasion of privacy. This project was a significant step forward in developing a complete framework for systematically designing, analyzing, and applying digital watermarking, with a particular focus on medical image security. A formal generic watermarking model, three new attack models, and an efficient watermarking technique for medical images were developed. These outcomes contribute to standardizing future research in formal modeling and complete security and computational analysis of watermarking schemes.
Resumo:
While formal definitions and security proofs are well established in some fields like cryptography and steganography, they are not as evident in digital watermarking research. A systematic development of watermarking schemes is desirable, but at present their development is usually informal, ad hoc, and omits the complete realization of application scenarios. This practice not only hinders the choice and use of a suitable scheme for a watermarking application, but also leads to debate about the state-of-the-art for different watermarking applications. With a view to the systematic development of watermarking schemes, we present a formal generic model for digital image watermarking. Considering possible inputs, outputs, and component functions, the initial construction of a basic watermarking model is developed further to incorporate the use of keys. On the basis of our proposed model, fundamental watermarking properties are defined and their importance exemplified for different image applications. We also define a set of possible attacks using our model showing different winning scenarios depending on the adversary capabilities. It is envisaged that with a proper consideration of watermarking properties and adversary actions in different image applications, use of the proposed model would allow a unified treatment of all practically meaningful variants of watermarking schemes.
Resumo:
Despite policies of deinstitutionalisation, many people with intellectual disabilities in developed western countries continue to live in mainstream institutional settings, such as correctional facilities, rather than in the community with support from disability services. This paper reports on the life stories of 10 people with intellectual disabilities, who had been imprisoned in adult correctional facilities in Queensland. The pathways taken by these 10 people into and out of prison are marked by significant abuse, neglect, and poverty. Significant disparity and disconnection is also displayed between the policies and service approaches, particularly between the disability, mental health, and correctional systems in Queensland. Based on these findings, a framework for practice, which spans both generic and specialist services, is suggested.