783 resultados para Fuzzy attractors
Resumo:
We introduce a dominance intensity measuring method to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision-making problems on the basis of multi-attribute utility theory (MAUT) and fuzzy sets theory. We consider the situation where there is imprecision concerning decision-makers’ preferences, and imprecise weights are represented by trapezoidal fuzzy weights.The proposed method is based on the dominance values between pairs of alternatives. These values can be computed by linear programming, as an additive multi-attribute utility model is used to rate the alternatives. Dominance values are then transformed into dominance intensity measures, used to rank the alternatives under consideration. Distances between fuzzy numbers based on the generalization of the left and right fuzzy numbers are utilized to account for fuzzy weights. An example concerning the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides illustrates the approach. Monte Carlo simulation techniques have been used to show that the proposed method performs well for different imprecision levels in terms of a hit ratio and a rank-order correlation measure.
Resumo:
Numerous authors have proposed functions to quantify the degree of similarity between two fuzzy numbers using various descriptive parameters, such as the geometric distance, the distance between the centers of gravity or the perimeter. However, these similarity functions have drawback for specific situations. We propose a new similarity measure for generalized trapezoidal fuzzy numbers aimed at overcoming such drawbacks. This new measure accounts for the distance between the centers of gravity and the geometric distance but also incorporates a new term based on the shared area between the fuzzy numbers. The proposed measure is compared against other measures in the literature.
Resumo:
Assets are interrelated in risk analysis methodologies for information systems promoted by international standards. This means that an attack on one asset can be propagated through the network and threaten an organization's most valuable assets. It is necessary to valuate all assets, the direct and indirect asset dependencies, as well as the probability of threats and the resulting asset degradation. These methodologies do not, however, consider uncertain valuations and use precise values on different scales, usually percentages. Linguistic terms are used by the experts to represent assets values, dependencies and frequency and asset degradation associated with possible threats. Computations are based on the trapezoidal fuzzy numbers associated with these linguistic terms.
Resumo:
The Pridneprovsky Chemical Plant was one of the largest uranium processing enterprises in the former USSR, producing a huge amount of uranium residues. The Zapadnoe tailings site contains most of these residues. We propose a theoretical framework based on multicriteria decision analysis and fuzzy logic to analyze different remediation alternatives for the Zapadnoe tailings, which simultaneously accounts for potentially conflicting economic, social and environmental objectives. We build an objective hierarchy that includes all the relevant aspects. Fuzzy rather than precise values are proposed for use to evaluate remediation alternatives against the different criteria and to quantify preferences, such as the weights representing the relative importance of criteria identified in the objective hierarchy. Finally, we suggest that remediation alternatives should be evaluated by means of a fuzzy additive multi-attribute utility function and ranked on the basis of the respective trapezoidal fuzzy number representing their overall utility.
Resumo:
Expert knowledge is used to assign probabilities to events in many risk analysis models. However, experts sometimes find it hard to provide specific values for these probabilities, preferring to express vague or imprecise terms that are mapped using a previously defined fuzzy number scale. The rigidity of these scales generates bias in the probability elicitation process and does not allow experts to adequately express their probabilistic judgments. We present an interactive method for extracting a fuzzy number from experts that represents their probabilistic judgments for a given event, along with a quality measure of the probabilistic judgments, useful in a final information filtering and analysis sensitivity process.
Resumo:
We propose a fuzzy approach to deal with risk analysis for information systems. We extend MAGERIT methodology that valuates the asset dependencies to a fuzzy framework adding fuzzy linguistic terms to valuate the different elements (terminal asset values, asset dependencies as well as the probability of threats and the resulting asset degradation) in risk analysis. Computations are based on the trapezoidal fuzzy numbers associated with these linguistic terms and, finally, the results of these operations are translated into a linguistic term by means of a similarity function.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
This work aims to develop a novel Cross-Entropy (CE) optimization-based fuzzy controller for Unmanned Aerial Monocular Vision-IMU System (UAMVIS) to solve the seeand- avoid problem using its accurate autonomous localization information. The function of this fuzzy controller is regulating the heading of this system to avoid the obstacle, e.g. wall. In the Matlab Simulink-based training stages, the Scaling Factor (SF) is adjusted according to the specified task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the collison avoidance performance. After obtained the optimal SF and MF, 64% of rules has been reduced (from 125 rules to 45 rules), and a large number of real flight tests with a quadcopter have been done. The experimental results show that this approach precisely navigates the system to avoid the obstacle. To our best knowledge, this is the first work to present the optimized fuzzy controller for UAMVIS using Cross-Entropy method in Scaling Factors and Membership Functions optimization.
Resumo:
This paper presents a vision based autonomous landing control approach for unmanned aerial vehicles (UAV). The 3D position of an unmanned helicopter is estimated based on the homographies estimated of a known landmark. The translation and altitude estimation of the helicopter against the helipad position are the only information that is used to control the longitudinal, lateral and descend speeds of the vehicle. The control system approach consists in three Fuzzy controllers to manage the speeds of each 3D axis of the aircraft s coordinate system. The 3D position estimation was proven rst, comparing it with the GPS + IMU data with very good results. The robust of the vision algorithm against occlusions was also tested. The excellent behavior of the Fuzzy control approach using the 3D position estimation based in homographies was proved in an outdoors test using a real unmanned helicopter.
Resumo:
Usually, vehicle applications require the use of artificial intelligent techniques to implement control methods, due to noise provided by sensors or the impossibility of full knowledge about dynamics of the vehicle (engine state, wheel pressure or occupiers weight). This work presents a method to on-line evolve a fuzzy controller for commanding vehicles? pedals at low speeds; in this scenario, the slightest alteration in the vehicle or road conditions can vary controller?s behavior in a non predictable way. The proposal adapts singletons positions in real time, and trapezoids used to codify the input variables are modified according with historical data. Experimentation in both simulated and real vehicles are provided to show how fast and precise the method is, even compared with a human driver or using different vehicles.
Resumo:
In this paper, we axiomatically introduce fuzzy multi-measures on bounded lattices. In particular, we make a distinction between four different types of fuzzy set multi-measures on a universe X, considering both the usual or inverse real number ordering of this lattice and increasing or decreasing monotonicity with respect to the number of arguments. We provide results from which we can derive families of measures that hold for the applicable conditions in each case.
Resumo:
There is controversy regarding the use of the similarity functions proposed in the literature to compare generalized trapezoidal fuzzy numbers since conflicting similarity values are sometimes output for the same pair of fuzzy numbers. In this paper we propose a similarity function aimed at establishing a consensus. It accounts for the different approaches of all the similarity functions. It also has better properties and can easily incorporate new parameters for future improvements. The analysis is carried out on the basis of a large and representative set of pairs of trapezoidal fuzzy numbers.
Resumo:
In this paper we focus on the selection of safeguards in a fuzzy risk analysis and management methodology for information systems (IS). Assets are connected by dependency relationships, and a failure of one asset may affect other assets. After computing impact and risk indicators associated with previously identified threats, we identify and apply safeguards to reduce risks in the IS by minimizing the transmission probabilities of failures throughout the asset network. However, as safeguards have associated costs, the aim is to select the safeguards that minimize costs while keeping the risk within acceptable levels. To do this, we propose a dynamic programming-based method that incorporates simulated annealing to tackle optimizations problems.
Resumo:
The Pridneprovsky Chemical Plant was a largest uranium processing enterprises, producing a huge amount of uranium residues. The Zapadnoe tailings site contains the majority of these residues. We propose a theoretical framework based on Multi-Criteria Decision Analysis and fuzzy logic to analyse different remediation alternatives for the Zapadnoe tailings, in which potentially conflicting economic, radiological, social and environmental objectives are simultaneously taken into account. An objective hierarchy is built that includes all the relevant aspects. Fuzzy rather than precise values are proposed for use to evaluate remediation alternatives against the different criteria and to quantify preferences, such as the weights representing the relative importance of criteria identified in the objective hierarchy. Finally, it is proposed that remediation alternatives should be evaluated by means of a fuzzy additive multi-attribute utility function and ranked on the basis of the respective trapezoidal fuzzy number representing their overall utility.
Resumo:
This work aims to develop a novel Cross-Entropy (CE) optimization-based fuzzy controller for Unmanned Aerial Monocular Vision-IMU System (UAMVIS) to solve the seeand-avoid problem using its accurate autonomous localization information. The function of this fuzzy controller is regulating the heading of this system to avoid the obstacle, e.g. wall. In the Matlab Simulink-based training stages, the Scaling Factor (SF) is adjusted according to the specified task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the collison avoidance performance. After obtained the optimal SF and MF, 64% of rules has been reduced (from 125 rules to 45 rules), and a large number of real flight tests with a quadcopter have been done. The experimental results show that this approach precisely navigates the system to avoid the obstacle. To our best knowledge, this is the first work to present the optimized fuzzy controller for UAMVIS using Cross-Entropy method in Scaling Factors and Membership Functions optimization.