823 resultados para Fretting fatigue
Resumo:
Pavement analysis and design for fatigue cracking involves a number of practical problems like material assessment/screening and performance prediction. A mechanics-aided method can answer these questions with satisfactory accuracy in a convenient way when it is appropriately implemented. This paper presents two techniques to implement the pseudo J-integral based Paris’ law to evaluate and predict fatigue cracking in asphalt mixtures and pavements. The first technique, quasi-elastic simulation, provides a rational and appropriate reference modulus for the pseudo analysis (i.e., viscoelastic to elastic conversion) by making use of the widely used material property: dynamic modulus. The physical significance of the quasi-elastic simulation is clarified. Introduction of this technique facilitates the implementation of the fracture mechanics models as well as continuum damage mechanics models to characterize fatigue cracking in asphalt pavements. The second technique about modeling fracture coefficients of the pseudo J-integral based Paris’ law simplifies the prediction of fatigue cracking without performing fatigue tests. The developed prediction models for the fracture coefficients rely on readily available mixture design properties that directly affect the fatigue performance, including the relaxation modulus, air void content, asphalt binder content, and aggregate gradation. Sufficient data are collected to develop such prediction models and the R2 values are around 0.9. The presented case studies serve as examples to illustrate how the pseudo J-integral based Paris’ law predicts fatigue resistance of asphalt mixtures and assesses fatigue performance of asphalt pavements. Future applications include the estimation of fatigue life of asphalt mixtures/pavements through a distinct criterion that defines fatigue failure by its physical significance.
Resumo:
This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.
Resumo:
Most pavement design procedures incorporate reliability to account for design inputs-associated uncertainty and variability effect on predicted performance. The load and resistance factor design (LRFD) procedure, which delivers economical section while considering design inputs variability separately, has been recognised as an effective tool to incorporate reliability into design procedures. This paper presents a new reliability-based calibration in LRFD format for a mechanics-based fatigue cracking analysis framework. This paper employs a two-component reliability analysis methodology that utilises a central composite design-based response surface approach and a first-order reliability method. The reliability calibration was achieved based on a number of field pavement sections that have well-documented performance history and high-quality field and laboratory data. The effectiveness of the developed LRFD procedure was evaluated by performing pavement designs of various target reliabilities and design conditions. The result shows an excellent agreement between the target and actual reliabilities. Furthermore, it is clear from the results that more design features need to be included in the reliability calibration to minimise the deviation of the actual reliability from the target reliability.
Resumo:
The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown to play a role. 75% of prosthesis with high femoral head-trunnion offset exhibited poor performance compared to 15% with a low offset. Large femoral heads (>32mm) did not exhibit poor corrosion or fretting. Implantation time was not sufficient to cause poor performance; 54% of prosthesis with greater than 10 years in-vivo demonstrated none or mild corrosion/fretting.
Resumo:
An increase in the demand for the freight shipping in the United States has been predicted for the near future and Longer Combination Vehicles (LCVs), which can carry more loads in each trip, seem like a good solution for the problem. Currently, utilizing LCVs is not permitted in most states of the US and little research has been conducted on the effects of these heavy vehicles on the roads and bridges. In this research, efforts are made to study these effects by comparing the dynamic and fatigue effects of LCVs with more common trucks. Ten Steel and prestressed concrete bridges with span lengths ranging from 30’ to 140’ are designed and modeled using the grid system in MATLAB. Additionally, three more real bridges including two single span simply supported steel bridges and a three span continuous steel bridge are modeled using the same MATLAB code. The equations of motion of three LCVs as well as eight other trucks are derived and these vehicles are subjected to different road surface conditions and bumps on the roads and the designed and real bridges. By forming the bridge equations of motion using the mass, stiffness and damping matrices and considering the interaction between the truck and the bridge, the differential equations are solved using the ODE solver in MATLAB and the results of the forces in tires as well as the deflections and moments in the bridge members are obtained. The results of this study show that for most of the bridges, LCVs result in the smallest values of Dynamic Amplification Factor (DAF) whereas the Single Unit Trucks cause the highest values of DAF when traveling on the bridges. Also in most cases, the values of DAF are observed to be smaller than the 33% threshold suggested by the design code. Additionally, fatigue analysis of the bridges in this study confirms that by replacing the current truck traffic with higher capacity LCVs, in most cases, the remaining fatigue life of the bridge is only slightly decreased which means that taking advantage of these larger vehicles can be a viable option for decision makers.
Resumo:
Funded by: The Institute of Applied Health Sciences, University of Aberdeen The British Society for Rheumatology Biologics Register for Rheumatoid Arthritis British Society for Rheumatology to the University of Manchester Schering-Plough Wyeth Laboratories Abbott Laboratories Amgen
Resumo:
Funded by: The Institute of Applied Health Sciences, University of Aberdeen The British Society for Rheumatology Biologics Register for Rheumatoid Arthritis British Society for Rheumatology to the University of Manchester Schering-Plough Wyeth Laboratories Abbott Laboratories Amgen
Resumo:
Acknowledgment: The authors would like to thank the University of Manchester for access to the Norfolk Arthritis Register data and Professor Deborah Symmons for comments on an earlier draft of the manuscript. K.L.D. is funded by a studentship from the Institute of Applied Health Sciences, University of Aberdeen.
Resumo:
Peer reviewed
Resumo:
This work was supported by programme grants from the Medical Research Council G1000143 and the Cancer Research UK 8257. Funders have no roles in study design, analysis, and interpretation of the findings.
Resumo:
Funded by: The Institute of Applied Health Sciences, University of Aberdeen The British Society for Rheumatology Biologics Register for Rheumatoid Arthritis British Society for Rheumatology to the University of Manchester Schering-Plough Wyeth Laboratories Abbott Laboratories Amgen
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Conventional reliability models for parallel systems are not applicable for the analysis of parallel systems with load transfer and sharing. In this short communication, firstly, the dependent failures of parallel systems are analyzed, and the reliability model of load-sharing parallel system is presented based on Miner cumulative damage theory and the full probability formula. Secondly, the parallel system reliability is calculated by Monte Carlo simulation when the component life follows the Weibull distribution. The research result shows that the proposed reliability mathematical model could analyze and evaluate the reliability of parallel systems in the presence of load transfer.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Background: Chronic fatigue syndrome, also known as myalgic encephalomyelitis (CFS/ME), is characterized by chronic disabling fatigue and other symptoms, which are not explained by an alternative diagnosis. Previous trials have suggested that graded exercise therapy (GET) is an effective and safe treatment. GET itself is therapist-intensive with limited availability. Objective: While guided self-help based on cognitive behavior therapy appears helpful to patients, Guided graded Exercise Self-help (GES) is yet to be tested. Methods: This pragmatic randomized controlled trial is set within 2 specialist CFS/ME services in the South of England. Adults attending secondary care clinics with National Institute for Health and Clinical Excellence (NICE)-defined CFS/ME (N=218) will be randomly allocated to specialist medical care (SMC) or SMC plus GES while on a waiting list for therapist-delivered rehabilitation. GES will consist of a structured booklet describing a 6-step graded exercise program, supported by up to 4 face-to-face/telephone/Skype™ consultations with a GES-trained physiotherapist (no more than 90 minutes in total) over 8 weeks. The primary outcomes at 12-weeks after randomization will be physical function (SF-36 physical functioning subscale) and fatigue (Chalder Fatigue Questionnaire). Secondary outcomes will include healthcare costs, adverse outcomes, and self-rated global impression change scores. We will follow up all participants until 1 year after randomization. We will also undertake qualitative interviews of a sample of participants who received GES, looking at perceptions and experiences of those who improved and worsened. Results: The project was funded in 2011 and enrolment was completed in December 2014, with follow-up completed in March 2016. Data analysis is currently underway and the first results are expected to be submitted soon. Conclusions: This study will indicate whether adding GES to SMC will benefit patients who often spend many months waiting for rehabilitative therapy with little or no improvement being made during that time. The study will indicate whether this type of guided self-management is cost-effective and safe. If this trial shows GES to be acceptable, safe, and comparatively effective, the GES booklet could be made available on the Internet as a practitioner and therapist resource for clinics to recommend, with the caveat that patients also be supported with guidance from a trained physiotherapist. The pragmatic approach in this trial means that GES findings will be generalizable to usual National Health Service (NHS) practice.