950 resultados para Free radical generation
Resumo:
Several drugs and their associations are being used for adjuvant or complementary chemotherapy with the aim of improving results of gastric cancer treatment. The objective of this study was to verify the impact of these drugs on nutrition and on survival rate after radical treatment of 53 patients with gastric cancer in stage III of the TNM classification. A control group including 28 patients who had only undergone radical resection was compared to a group of 25 patients who underwent the same operative technique followed by adjuvant polychemotherapy with FAM (5-fluorouracil, Adriamycin, and mitomycin C). In this latter group, chemotherapy toxicity in relation to hepatic, renal, cardiologic, neurological, hematologic, gastrointestinal, and dermatological functions was also studied. There was no significant difference on admission between both groups in relation to gender, race, macroscopic tumoral type of tumor according to the Borrmann classification, location of the tumor in the stomach, length of the gastric resection, or response to cutaneous tests on delayed sensitivity. Chemotherapy was started on average, 2.3 months following surgical treatment. Clinical and laboratory follow-up of all patients continued for 5 years. The following conclusions were reached: 1) The nutritional status and incidence of gastrointestinal manifestation were similar in both groups; 2) There was no occurrence of cardiac, renal, neurological, or hepatic toxicity or death due to the chemotherapeutic method per se; 3) Dermatological alterations and hematological toxicity occurred exclusively in patients who underwent polychemotherapy; 4) There was no significant difference between the rate and site of tumoral recurrence, the disease-free interval, or the survival rate of both study groups; 5) Therefore, we concluded, after a 5-year follow-up, chemotherapy with the FAM regimen did not increase the survival rate.
Resumo:
BACKGROUND: Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet's membrane, in the posterior cornea. METHODOLOGY/PRINCIPAL FINDINGS: We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet's membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats. CONCLUSIONS/SIGNIFICANCE: Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily generalized to other structural remodeling of the cornea and SHG microscopy should prove to be invaluable for in vivo corneal pathological studies.
Resumo:
Good afternoon ladies and gentlemen. I am very pleased that you were all able to accept my invitation to join me here today on this landmark occasion for nursing education. It is fitting that all of the key stakeholders from the health and education sectors should be so well represented at the launch of an historic new development. Rapid and unpredictable change throughout society has been the hallmark of the twenty-first century, and healthcare is no exception. Regardless of what change occurs, no one doubts that nursing is intrinsic to the health of this nation. However, significant changes in nurse education are now needed if the profession is to deliver on its social mandate to promote people´s health by providing excellent and sensitive care. As science, technology and the demands of the public for sophisticated and responsive health care become increasingly complex, it is essential that the foundation of nursing education is redesigned. Pre-registration nursing education has already undergone radical change over the past eight years, during which time it has moved from an apprenticeship model of education and training to a diploma based programme firmly rooted in higher education. The Secretary General of my Department, Michael Kelly, played a leading role in bringing about this transformation, which has greatly enhanced the way students are prepared for entry to the nursing profession. The benefits of the revised model of education are clearly evident from the quality of the nurses graduating from the diploma programme. The Commission on Nursing examined the whole area of nursing education, and set out a very convincing case for educating nursing students to degree level. It argued that nurses of the future would be required to possess increased flexibility and the ability to work autonomously. A degree programme would provide nurses with a theoretical underpinning that would enable them to develop their clinical skills to a greater extent and to respond to future challenges in health care, for the benefit of patients and clients of the health services. The Commission has provided a solid framework for the professional development of nurses and midwives, including a process that is already underway for the creation of clinical nurse specialist and advanced nurse practitioner posts. This process will facilitate the transfer of skills across divisions of nursing. In this scenario, it is clearly desirable that the future benchmark qualification for registration as a nurse should be a degree in nursing studies. A Nursing Education Forum was established in early 1999 to prepare a strategic framework for the implementation of a nursing degree programme. When launching the Forum´s report last January, I indicated that the Government had agreed in principle to the introduction of the proposed degree programme next year. At the time two substantial outstanding issues had yet to be resolved, namely the basis on which nurse teachers would transfer from the health sector to the education sector and the amount of capital and revenue funding required to operate the degree programme. My Department has brokered agreements between the Nursing Alliance and the Higher Education Institutions for the assimilation of nurse teachers as lecturers into their affiliated institutions. The terms of these agreements have been accepted by all four nursing unions following a ballot of their nurse teacher members. I would like to pay particular tribute to all nurse teachers who have contributed to shaping the position, relevance and visibility of nursing through leadership, which embodies scholarship and excellence in the profession of nursing itself. In response to a recommendation of the Nursing Education Forum, I established an Inter-Departmental Steering Committee, chaired by Bernard Carey of my Department, to consider all the funding and policy issues. This Steering Committee includes representatives of the Department of Finance and the Department of Education and Science as well as the Higher Education Authority. The Steering Committee has been engaged in intensive negotiations with representatives of the Conference of Heads of Irish Universities and the Institutes of Technology in relation to their capital and revenue funding requirements. These negotiations were successfully concluded within the past few weeks. The satisfactory resolution of the industrial relations and funding issues cleared the way for me to go to the Government with concrete proposals for the implementation of degree level education for nursing students. I am delighted to announce here today that the Government has approved all of my proposals, and that a four-year undergraduate pre-registration nursing degree programme will be implemented on a nation-wide basis at the start of the next academic year, 2002/2003. The Government has approved the provision of capital funding totalling £176 million pounds for a major building and equipment programme to facilitate the full integration of nursing students into the higher education sector. This programme is due to be completed by September 2004, and will ensure that nursing students are accommodated in purpose built schools of nursing studies with state of the art clinical skills and human science laboratories at thirteen higher education sites throughout the country. The Government has also agreed to make available the substantial additional revenue funding required to support the nursing degree programme. By 2006, the full year cost of operating the programme will rise to some £43 million pounds. The scale of this investment in pre-registration nursing education is enormous by any yardstick. It demonstrates the firm commitment of myself and my Government colleagues to the full implementation of the recommendations of the Commission on Nursing, of which the introduction of pre-registration degree level education is arguably the most important. This historic decision, and it is truly historic, will finally put the education of nurses on a par with the education of other health care professionals. The nursing profession has long been striving for parity, and my own involvement in the achievement of it is a matter of deep personal satisfaction to me. I am also pleased to announce that the Government has approved my plans for increasing the number of nursing training places to coincide with the implementation of the degree programme next year. Ninety-three additional places in mental handicap and psychiatric nursing will be created at Athlone, Letterkenny, Tralee and Waterford Institutes of Technology. This will yield 392 extra places over the four years of the degree programme. A total of 1,640 places annually on the new degree programme will thus be available. This is an all-time record, and maintaining the annual student intake at this level for the foreseeable future is a key element of my overall strategy for ensuring that we produce sufficient “home-grown” nurses for our health services. I am aware that the Nursing Alliance were anxious that some funding would be provided for the further academic career development of nurse teachers who transfer to one of the six Universities that will be involved in the delivery of the degree programme. I am happy to confirm that up to £300,000 in total per year will be available for this purpose over the first four years of the degree programme. In line with a recommendation of the Commission on Nursing, my Department will have responsibility for the administration of the nursing degree budget until the programme has been bedded down in the higher education sector. A primary concern will be to ensure that the substantial capital and revenue funding involved is ring-fenced for nursing studies. It is intended that responsibility for the budget will be transferred to the Department of Education and Science after the first cohort of nursing degree students have graduated in 2006. In the context of today´s launch, it is relevant to refer to a special initiative that I introduced last year to assist registered nurses wishing to undertake part-time nursing degree courses. Under this initiative, nurses are entitled to have their course fees paid by their employers in return for a commitment to continue working in the public health service for a period following completion of the course. This initiative has proved extremely popular with large numbers of nurses availing of it. I want to confirm here today that the free fees initiative will continue in operation until 2005, at a total cost of at least £15 million pounds. I am giving this commitment in order to assure this year´s intake of nursing students to the final diploma programmes that fee support for a part-time nursing degree course will be available to them when they graduate in three years time. The focus of today´s celebration is rightly on the landmark Government decision to implement the nursing degree programme next year. As Minister for Health and Children, and as a former Minister for Education, I also have a particular interest in the educational opportunities available to other health service workers to upgrade their skills. I am pleased to announce that the Government has approved my proposals for the introduction of a sponsorship scheme for suitable, experienced health care assistants who wish to become nurses. This new scheme will commence next year and will be administered by the health boards. Successful applicants will be allowed to retain their existing salaries throughout the four years of the degree programme in return for a commitment to work as nurses for their health service employer for a period of five years following registration. Up to forty sponsorships will be available annually. The new scheme will enable suitable applicants to undertake nursing education and training without suffering financial hardship. The greatest advantage of the scheme will be the retention by the public health service of staff who are supported under it, since they will have had practical experience of working in the service and their own personal commitment to upgrading their skills will be informed by that experience. I am confident that the sponsorship scheme will be warmly welcomed by health service unions representing care assistants as providing an exciting new career development path for their members. Education and health are now the two pillars upon which the profession of nursing rests. We must continue to build bridges, even tunnels where needed to strengthen this partnership. We must all understand partnerships donâ?Tt just happen they are designed and must be worked at. The changes outlined here today are powerful incentives for those in healthcare agencies, academic institutions and regulatory bodies to design revolutionary programmes capable of shaping a critical mass of excellent practitioners. You have an opportunity, greater perhaps than has been granted to any other generation in history to make certain those changes are for the good. Ultimately changes that will make the country a healthier and more equitable place to live. The challenge relates to building a seamless preparatory programme which equally respects both education and practise as an indivisible duo whilst ensuring that high tech does not replace the human touch. This is a special day in the history of the development of the Irish nursing profession, and I would like to thank everybody for their contribution. I want to express my particular appreciation of two people who by this stage are well known to all of you – Bernard Carey of my Department and Siobhán O´Halloran of the National Implementation Committee. Bernard and Siobhán have devoted considerable time and energy to the project on my behalf over the past fourteen months or so. That we are here today celebrating the launch of degree level education is due in no small part to their successful execution of the mandate that I gave them. We live in a rapidly changing world, one in which nursing can no longer rely on systems of the past to guide it through the new millennium. In terms of contemporary healthcare, nursing is no longer just a reciprocal kindness but rather a highly complex set of professional behaviours, which require serious educational investment. Pre-registration nurse education will always need development and redesign to ensure our health care system meets the demands of modern society. Nothing is finite. Today more than ever the health system is dependent on the resourcefulness of nursing. I have no doubt that the new educational landscape painted will ensure that nurses of the future will be increasingly innovative, independent and in demand. The unmistakable message from my Department is that nursing really matters. Thank you.
Resumo:
The availability of induced pluripotent stem cells (iPSCs)has created extraordinary opportunities for modeling andperhaps treating human disease. However, all reprogrammingprotocols used to date involve the use of products of animal origin. Here, we set out to develop a protocol to generate and maintain human iPSC that would be entirelydevoid of xenobiotics. We first developed a xeno-free cellculture media that supported the long-term propagation of human embryonic stem cells (hESCs) to a similar extent as conventional media containing animal origin products or commercially available xeno-free medium. We also derivedprimary cultures of human dermal fibroblasts under strictxeno-free conditions (XF-HFF), and we show that they can be used as both the cell source for iPSC generation as well as autologous feeder cells to support their growth. We also replaced other reagents of animal origin trypsin, gelatin, matrigel) with their recombinant equivalents. Finally, we used vesicular stomatitis virus G-pseudotyped retroviral particles expressing a polycistronic construct encoding Oct4, Sox2, Klf4, and GFP to reprogram XF-HFF cells under xeno-free conditions. A total of 10 xeno-free humaniPSC lines were generated, which could be continuously passaged in xeno-free conditions and aintained characteristics indistinguishable from hESCs, including colonymorphology and growth behavior, expression of pluripotency-associated markers, and pluripotent differentiationability in vitro and in teratoma assays. Overall, the resultspresented here demonstrate that human iPSCs can be generatedand maintained under strict xeno-free conditions and provide a path to good manufacturing practice (GMP) applicability that should facilitate the clinical translation of iPSC-based therapies.
Resumo:
The generation of patient-specific induced pluripotent stem cells (iPSCPSCPSCs) offers unprecedented opportunities for modeling and treating human disease. In combination with gene therapy, the iPSCPSCPSC technology can be used to generate disease-free progenitor cells of potential interest for autologous cell therapy. We explain a protocol for the reproducible generation of genetically corrected iPSCPSCPSCs starting from the skin biopsies of Fanconi anemia patients using retroviral transduction with OCT4, SOX2 and KLF4. Before reprogramming, the fibroblasts and/or keratinocytes of the patients are genetically corrected with lentiviruses expressing FANCA. The same approach may be used for other diseases susceptible to gene therapy correction. Genetically corrected, characterized lines of patient-specific iPSCPSCPSCs can be obtained in 4–5 months.
Resumo:
The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.
Resumo:
INTRODUCTION: The cell surface endopeptidase CD10 (neutral endopeptidase) and nuclear factor-κB (NF-κB) have been independently associated with prostate cancer (PC) progression. We investigated the correlations between these two factors and their prognostic relevance in terms of biochemical (prostate-specific antigen, PSA) relapse after radical prostatectomy (RP) for localized PC. PATIENTS AND METHODS: The immunohistochemical expression of CD10 and NF-κB in samples from 70 patients who underwent RP for localized PC was correlated with the preoperative PSA level, Gleason score, pathological stage and time to PSA failure. RESULTS: CD10 expression was inversely associated with NF-κB expression (p < 0.001), stage (p = 0.03) and grade (p = 0.003), whereas NF-κB was directly related with stage (p = 0.006) and grade (p = 0.002). The median time to PSA failure was 56 months. CD10 and NF-κB were directly (p < 0.001) and inversely (p < 0.001) correlated with biochemical recurrence-free survival, respectively. CD10 expression (p = 0.022) and stage (p = 0.018) were independently associated with time to biochemical recurrence. CONCLUSION: Low CD10 expression is an adverse prognostic factor for biochemical relapse after RP in localized PC, which is also associated with high NF-κB expression. Decreased CD10 expression which would lead to increased neuropeptide signaling and NF-κB activity may be present in a subset of early PCs.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. Cell-free miRNAs detected in blood plasma are used as specific and sensitive markers of physiological processes and some diseases. Circulating miRNAs are highly stable in body fluids, for example plasma. Therefore, profiles of circulating miRNAs have been investigated for potential use as novel, non-invasive anti-doping biomarkers. This review describes the biological mechanisms underlying the variation of circulating miRNAs, revealing that they have great potential as a new class of biomarker for detection of doping substances. The latest developments in extraction and profiling technology, and the technical design of experiments useful for anti-doping, are also discussed. Longitudinal measurements of circulating miRNAs in the context of the athlete biological passport are proposed as an efficient strategy for the use of these new markers. The review also emphasizes potential challenges for the translation of circulating miRNAs from research into practical anti-doping applications.
Resumo:
The intense systemic inflammatory response characterizing septic shock is associated with an increased generation of free radicals by multiple cell types in cardiovascular and non cardiovascular tissues. The oxygen-centered radical superoxide anion (O2 .-) rapidly reacts with the nitrogen-centered radical nitric oxide (NO.) to form the potent oxidant species peroxynitrite. Peroxynitrite oxidizes multiple targets molecules, either directly or via the secondary generation of highly reactive radicals, resulting in significant alterations in lipids, proteins and nucleic acids, with significant cytotoxic consequences. The formation of peroxynitrite is a key pathophysiological mechanism contributing to the cardiovascular collapse of septic shock, promoting vascular contractile failure, endothelial and myocardial dysfunction, and is also implicated in the occurrence of multiple organ dysfunction in this setting. The recent development of various porphyrin-based pharmacological compounds accelerating the degradation of peroxynitrite has allowed to specifically address these pathophysiological roles of peroxynitrite in experimental septic shock. Such agents, including 5,10,15,20-tetrakis(4- sulfonatophenyl)porphyrinato iron III chloride (FeTTPs), manganese tetrakis(4-N-methylpyridyl)porphyrin (MnTMPyP), Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether)pyridyl porphyrin) (FP-15) and WW-85, have been shown to improve the cardiovascular and multiple organ failure in small and large animal models of septic shock. Therefore, these findings support the development of peroxynitrite decomposition catalysts as potentially useful novel therapeutic agents to restore cardiovascular function in sepsis.
Resumo:
Due to the helical structure of DNA the process of DNA replication is topologically complex. Freshly replicated DNA molecules are catenated with each other and are frequently knotted. For proper functioning of DNA it is necessary to remove all of these entanglements. This is done by DNA topoisomerases that pass DNA segments through each other. However, it has been a riddle how DNA topoisomerases select the sites of their action. In highly crowded DNA in living cells random passages between contacting segments would only increase the extent of entanglement. Using molecular dynamics simulations we observed that in actively supercoiled DNA molecules the entanglements resulting from DNA knotting or catenation spontaneously approach sites of nicks and gaps in the DNA. Type I topoisomerases, that preferentially act at sites of nick and gaps, are thus naturally provided with DNA-DNA juxtapositions where a passage results in an error-free DNA unknotting or DNA decatenation.
Resumo:
OBJECTIVE: Several smaller single-center studies have reported a prognostic role for Ki-67 labeling index in prostate cancer. Our aim was to test whether Ki-67 is an independent prognostic marker of biochemical recurrence (BCR) in a large international cohort of patients treated with radical prostatectomy (RP). METHODS: Ki-67 immunohistochemical staining on prostatectomy specimens from 3,123 patients who underwent RP for prostate cancer was retrospectively performed. Univariable and multivariable Cox regression models were used to assess the association of Ki-67 status with BCR. RESULTS: Ki-67 positive status was observed in 762 (24.4 %) patients and was associated with lymph node involvement (LNI) (p = 0.039). Six hundred and twenty-one (19.9 %) patients experienced BCR. The estimated 3-year biochemical-free survivals were 85 % for patients with negative Ki-67 status and 82.1 % for patients with positive Ki-67 status (log-rank test, p = 0.014). In multivariable analysis that adjusted for the effects of age, preoperative PSA, RP Gleason sum, seminal vesicle invasion, extracapsular extension, positive surgical margins, lymphovascular invasion, and LNI, Ki-67 was significantly associated with BCR (HR = 1.19; p = 0.019). Subgroup analysis revealed that Ki-67 is associated with BCR in patients without LNI (p = 0.004), those with RP Gleason sum 7 (p = 0.015), and those with negative surgical margins (p = 0.047). CONCLUSION: We confirmed Ki-67 as an independent predictor of BCR after RP. Ki-67 could be particularly informative in patients with favorable pathologic characteristics to help in the clinical decision-making regarding adjuvant therapy and optimized follow-up scheduling.
Resumo:
The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide
Resumo:
Prostate-specific antigen (PSA) is a marker that is commonly used in estimating prostate cancer risk. Prostate cancer is usually a slowly progressing disease, which might not cause any symptoms whatsoever. Nevertheless, some cases of cancer are aggressive and need to be treated before they become life-threatening. However, the blood PSA concentration may rise also in benign prostate diseases and using a single total PSA (tPSA) measurement to guide the decision on further examinations leads to many unnecessary biopsies, over-detection, and overtreatment of indolent cancers which would not require treatment. Therefore, there is a need for markers that would better separate cancer from benign disorders, and would also predict cancer aggressiveness. The aim of this study was to evaluate whether intact and nicked forms of free PSA (fPSA-I and fPSA-N) or human kallikrein-related peptidase 2 (hK2) could serve as new tools in estimating prostate cancer risk. First, the immunoassays for fPSA-I and free and total hK2 were optimized so that they would be less prone to assay interference caused by interfering factors present in some blood samples. The optimized assays were shown to work well and were used to study the marker concentrations in the clinical sample panels. The marker levels were measured from preoperative blood samples of prostate cancer patients scheduled for radical prostatectomy. The association of the markers with the cancer stage and grade was studied. It was found that among all tested markers and their combinations especially the ratio of fPSA-N to tPSA and ratio of free PSA (fPSA) to tPSA were associated with both cancer stage and grade. They might be useful in predicting the cancer aggressiveness, but further follow-up studies are necessary to fully evaluate the significance of the markers in this clinical setting. The markers tPSA, fPSA, fPSA-I and hK2 were combined in a statistical model which was previously shown to be able to reduce unnecessary biopsies when applied to large screening cohorts of men with elevated tPSA. The discriminative accuracy of this model was compared to models based on established clinical predictors in reference to biopsy outcome. The kallikrein model and the calculated fPSA-N concentrations (fPSA minus fPSA-I) correlated with the prostate volume and the model, when compared to the clinical models, predicted prostate cancer in biopsy equally well. Hence, the measurement of kallikreins in a blood sample could be used to replace the volume measurement which is time-consuming, needs instrumentation and skilled personnel and is an uncomfortable procedure. Overall, the model could simplify the estimation of prostate cancer risk. Finally, as the fPSA-N seems to be an interesting new marker, a direct immunoassay for measuring fPSA-N concentrations was developed. The analytical performance was acceptable, but the rather complicated assay protocol needs to be improved until it can be used for measuring large sample panels.
Resumo:
The driving forces for current research of flame retardants are increased fire safety in combination with flame retardant formulations that fulfill the criteria of sustainable production and products. In recent years, important questions about the environmental safety of antimony, and in particular, brominated flame retardants have been raised. As a consequence of this, the current doctoral thesis work describes efforts to develop new halogen-free flame retardants that are based on various radical generators and phosphorous compounds. The investigation was first focused on compounds that are capable of generating alkyl radicals in order to study their role on flame retardancy of polypropylene. The family of azoalkanes was selected as the cleanest and most convenient source of free alkyl radicals. Therefore, a number of symmetrical and unsymmetrical azoalkanes of the general formula R-N=N-R’ were prepared. The experimental results show that in the series of different sized azocycloalkanes the flame retardant efficacy decreased in the following order: R = R´= cyclohexyl > cyclopentyl > cyclobutyl > cyclooctanyl > cyclododecanyl. However, in the series of aliphatic azoalkanes compounds, the efficacy decreased as followed: R = R´= n-alkyl > tert-butyl > tert-octyl. The most striking difference in flame retardant efficacy was observed in thick polypropylene plaques of 1 mm, e.g. azocyclohexane (AZO) had a much better flame retardant performance than did the commercial reference FR (Flamestab® NOR116) in thick PP sections. In addition, some of the prepared azoalkane flame retardants e.g. 4’4- bis(cyclohexylazocyclohexyl) methane (BISAZO) exhibited non-burning dripping behavior. Extrusion coating experiments of flame retarded low density polyethylene (LDPE) onto a standard machine finished Kraft paper were carried out in order to investigate the potential of azoalkanes in multilayer facings. The results show that azocyclohexane (AZO) and 4’4-bis (cyclohexylazocyclohexyl) methane (BISAZO) can significantly improve the flame retardant properties of low density polyethylene coated paper already at 0.5 wt.% loadings, provided that the maximum extrusion temperature of 260 oC is not exceeded and coating weight is kept low at 13 g/m2. In addition, various triazene-based flame retardants (RN1=N2-N3R’R’’) were prepared. For example, polypropylene samples containing a very low concentration of only 0.5 wt.% of bis- 4’4’-(3’3’-dimethyltriazene) diphenyl ether and other triazenes passed the DIN 4102-1 test with B2 classification. It is noteworthy that no burning dripping could be detected and the average burning times were very short with exceptionally low weight losses. Therefore, triazene compounds constitute a new and interesting family of radical generators for flame retarding of polymeric materials. The high flame retardant potential of triazenes can be attributed to their ability to generate various types of radicals during their thermal decomposition. According to thermogravimetric analysis/Fourier transform infrared spectroscopy/MS analysis, triazene units are homolytically cleaved into various aminyl, resonance-stabilized aryl radicals, and different CH fragments with simultaneous evolution of elemental nitrogen. Furthermore, the potential of thirteen aliphatic, aromatic, thiuram and heterocyclic substituted organic disulfide derivatives of the general formula R-S-S-R’ as a new group of halogen-free flame retardants for polypropylene films have been investigated. According to the DIN 4102- 1 standard ignitibility test, for the first time it has been demonstrated that many of the disulfides alone can effectively provide flame retardancy and self-extinguishing properties to polypropylene films at already very low concentrations of 0.5 wt.%. For the disulfide family, the highest FR activity was recorded for 5’5’-dithiobis (2-nitrobenzoic acid). Very low values for burning length (53 mm) and burning time (10 s) reflect significantly increased fire retardant performance of this disulfide compared to other compounds in this series as well as to Flamestab® NOR116. Finally, two new, phosphorus-based flame retardants were synthesized: P’P-diphenyl phosphinic hydrazide (PAH) and melamine phenyl phosphonate (MPhP). The DIN 4102-1 test and the more stringent UL94 vertical burning test (UL94 V) were used to assess the formulations ability to extinguish a flame once ignited. A very strong synergistic effect with azoalkanes was found, i.e. in combination with these radical generators even UL94 V0 rate could be obtained.
Resumo:
Exposure to stress induces a cluster of physiological and behavioral changes in an effort to maintain the homeostasis of the organism. Long-term exposure to stress, however, has detrimental effects on several cell functions such as the impairment of antioxidant defenses leading to oxidative damage. Oxidative stress is a central feature of many diseases. The lungs are particularly susceptible to lesions by free radicals and pulmonary antioxidant defenses are extensively distributed and include both enzymatic and non-enzymatic systems. The aim of the present study was to determine lipid peroxidation and total radical-trapping potential (TRAP) changes in lungs of rats submitted to different models of chronic stress. Adult male Wistar rats weighing 180-230 g were submitted to different stressors (variable stress, N = 7) or repeated restraint stress for 15 (N = 10) or 40 days (N = 6) and compared to control groups (N = 10 each). Lipid peroxidation levels were assessed by thiobarbituric acid reactive substances (TBARS), and TRAP was measured by the decrease in luminescence using the 2-2'-azo-bis(2-amidinopropane)-luminol system. Chronic variable stress induced a 51% increase in oxidative stress in lungs (control group: 0.037 ± 0.002; variable stress: 0.056 ± 0.007, P < 0.01). No difference in TBARS was observed after chronic restraint stress, but a significant 57% increase in TRAP was presented by the group repeatedly restrained for 15 days (control group: 2.48 ± 0.42; stressed: 3.65 ± 0.16, P < 0.05). We conclude that different stressors induce different effects on the oxidative status of the organism.