965 resultados para Fredholm-Stieltjes integral equations
Resumo:
A model equation for water waves has been suggested by Whitham to study, qualitatively at least, the different kinds of breaking. This is an integro-differential equation which combines a typical nonlinear convection term with an integral for the dispersive effects and is of independent mathematical interest. For an approximate kernel of the form e^(-b|x|) it is shown first that solitary waves have a maximum height with sharp crests and secondly that waves which are sufficiently asymmetric break into "bores." The second part applies to a wide class of bounded kernels, but the kernel giving the correct dispersion effects of water waves has a square root singularity and the present argument does not go through. Nevertheless the possibility of the two kinds of breaking in such integro-differential equations is demonstrated.
Difficulties arise in finding variational principles for continuum mechanics problems in the Eulerian (field) description. The reason is found to be that continuum equations in the original field variables lack a mathematical "self-adjointness" property which is necessary for Euler equations. This is a feature of the Eulerian description and occurs in non-dissipative problems which have variational principles for their Lagrangian description. To overcome this difficulty a "potential representation" approach is used which consists of transforming to new (Eulerian) variables whose equations are self-adjoint. The transformations to the velocity potential or stream function in fluids or the scaler and vector potentials in electromagnetism often lead to variational principles in this way. As yet no general procedure is available for finding suitable transformations. Existing variational principles for the inviscid fluid equations in the Eulerian description are reviewed and some ideas on the form of the appropriate transformations and Lagrangians for fluid problems are obtained. These ideas are developed in a series of examples which include finding variational principles for Rossby waves and for the internal waves of a stratified fluid.
Resumo:
The general theory of Whitham for slowly-varying non-linear wavetrains is extended to the case where some of the defining partial differential equations cannot be put into conservation form. Typical examples are considered in plasma dynamics and water waves in which the lack of a conservation form is due to dissipation; an additional non-conservative element, the presence of an external force, is treated for the plasma dynamics example. Certain numerical solutions of the water waves problem (the Korteweg-de Vries equation with dissipation) are considered and compared with perturbation expansions about the linearized solution; it is found that the first correction term in the perturbation expansion is an excellent qualitative indicator of the deviation of the dissipative decay rate from linearity.
A method for deriving necessary and sufficient conditions for the existence of a general uniform wavetrain solution is presented and illustrated in the plasma dynamics problem. Peaking of the plasma wave is demonstrated, and it is shown that the necessary and sufficient existence conditions are essentially equivalent to the statement that no wave may have an amplitude larger than the peaked wave.
A new type of fully non-linear stability criterion is developed for the plasma uniform wavetrain. It is shown explicitly that this wavetrain is stable in the near-linear limit. The nature of this new type of stability is discussed.
Steady shock solutions are also considered. By a quite general method, it is demonstrated that the plasma equations studied here have no steady shock solutions whatsoever. A special type of steady shock is proposed, in which a uniform wavetrain joins across a jump discontinuity to a constant state. Such shocks may indeed exist for the Korteweg-de Vries equation, but are barred from the plasma problem because entropy would decrease across the shock front.
Finally, a way of including the Landau damping mechanism in the plasma equations is given. It involves putting in a dissipation term of convolution integral form, and parallels a similar approach of Whitham in water wave theory. An important application of this would be towards resolving long-standing difficulties about the "collisionless" shock.
Resumo:
This paper is in two parts. In the first part we give a qualitative study of wave propagation in an inhomogeneous medium principally by geometrical optics and ray theory. The inhomogeneity is represented by a sound-speed profile which is dependent upon one coordinate, namely the depth; and we discuss the general characteristics of wave propagation which result from a source placed on the sound channel axis. We show that our mathematical model of the sound- speed in the ocean actually predicts some of the behavior of the observed physical phenomena in the underwater sound channel. Using ray theoretic techniques we investigate the implications of our profile on the following characteristics of SOFAR propagation: (i) the sound energy traveling further away from the axis takes less time to travel from source to receiver than sound energy traveling closer to the axis, (ii) the focusing of sound energy in the sound channel at certain ranges, (iii) the overall ray picture in the sound channel.
In the second part a more penetrating quantitative study is done by means of analytical techniques on the governing equations. We study the transient problem for the Epstein profile by employing a double transform to formally derive an integral representation for the acoustic pressure amplitude, and from this representation we obtain several alternative representations. We study the case where both source and receiver are on the channel axis and greatly separated. In particular we verify some of the earlier results derived by ray theory and obtain asymptotic results for the acoustic pressure in the far-field.
Resumo:
To resolve the diffraction problems of the pulsed wave field directly in the temporal domain, we extend the Rayleigh diffraction integrals to the temporal domain and then discuss the approximation condition of this diffraction formula. (C) 1997 Optical Society of America.
Resumo:
In this thesis we consider smooth analogues of operators studied in connection with the pointwise convergence of the solution, u(x,t), (x,t) ∈ ℝ^n x ℝ, of the free Schrodinger equation to the given initial data. Such operators are interesting examples of oscillatory integral operators with degenerate phase functions, and we develop strategies to capture the oscillations and obtain sharp L^2 → L^2 bounds. We then consider, for fixed smooth t(x), the restriction of u to the surface (x,t(x)). We find that u(x,t(x)) ∈ L^2(D^n) when the initial data is in a suitable L^2-Sobolev space H^8 (ℝ^n), where s depends on conditions on t.
Resumo:
In this work, computationally efficient approximate methods are developed for analyzing uncertain dynamical systems. Uncertainties in both the excitation and the modeling are considered and examples are presented illustrating the accuracy of the proposed approximations.
For nonlinear systems under uncertain excitation, methods are developed to approximate the stationary probability density function and statistical quantities of interest. The methods are based on approximating solutions to the Fokker-Planck equation for the system and differ from traditional methods in which approximate solutions to stochastic differential equations are found. The new methods require little computational effort and examples are presented for which the accuracy of the proposed approximations compare favorably to results obtained by existing methods. The most significant improvements are made in approximating quantities related to the extreme values of the response, such as expected outcrossing rates, which are crucial for evaluating the reliability of the system.
Laplace's method of asymptotic approximation is applied to approximate the probability integrals which arise when analyzing systems with modeling uncertainty. The asymptotic approximation reduces the problem of evaluating a multidimensional integral to solving a minimization problem and the results become asymptotically exact as the uncertainty in the modeling goes to zero. The method is found to provide good approximations for the moments and outcrossing rates for systems with uncertain parameters under stochastic excitation, even when there is a large amount of uncertainty in the parameters. The method is also applied to classical reliability integrals, providing approximations in both the transformed (independently, normally distributed) variables and the original variables. In the transformed variables, the asymptotic approximation yields a very simple formula for approximating the value of SORM integrals. In many cases, it may be computationally expensive to transform the variables, and an approximation is also developed in the original variables. Examples are presented illustrating the accuracy of the approximations and results are compared with existing approximations.
Resumo:
Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.
For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.
For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.
For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.
Resumo:
Using the correction terms in Heegaard Floer homology, we prove that if a knot in S3 admits a positive integral T-, O-, or I-type surgery, it must have the same knot Floer homology as one of the knots given in our complete list, and the resulting manifold is orientation-preservingly homeomorphic to the p-surgery on the corresponding knot.
Resumo:
The problem of s-d exchange scattering of conduction electrons off localized magnetic moments in dilute magnetic alloys is considered employing formal methods of quantum field theoretical scattering. It is shown that such a treatment not only allows for the first time, the inclusion of multiparticle intermediate states in single particle scattering equations but also results in extremely simple and straight forward mathematical analysis. These equations are proved to be exact in the thermodynamic limit. A self-consistent integral equation for electron self energy is derived and approximately solved. The ground state and physical parameters of dilute magnetic alloys are discussed in terms of the theoretical results. Within the approximation of single particle intermediate states our results reduce to earlier versions. The following additional features are found as a consequence of the inclusion of multiparticle intermediate states;
(i) A non analytic binding energy is pre sent for both, antiferromagnetic (J < o) and ferromagnetic (J > o) couplings of the electron plus impurity system.
(ii) The correct behavior of the energy difference of the conduction electron plus impurity system and the free electron system is found which is free of unphysical singularities present in earlier versions of the theories.
(iii) The ground state of the conduction electron plus impurity system is shown to be a many-body condensate state for J < o and J > o, both. However, a distinction is made between the usual terminology of "Singlet" and "Triplet" ground states and nature of our ground state.
(iv) It is shown that a long range ordering, leading to an ordering of the magnetic moments can result from a contact interaction such as the s-d exchange interaction.
(v) The explicit dependence of the excess specific heat of the Kondo systems is obtained and found to be linear in temperatures as T→ o and T ℓnT for 0.3 T_K ≤ T ≤ 0.6 T_K. A rise in (ΔC/T) for temperatures in the region 0 < T ≤ 0.1 T_K is predicted. These results are found to be in excellent agreement with experiments.
(vi) The existence of a critical temperature for Ferromagnetic coupling (J > o) is shown. On the basis of this the apparent contradiction of the simultaneous existence of giant moments and Kondo effect is resolved.
Resumo:
This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.
In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.
Resumo:
The problem of determining probability density functions of general transformations of random processes is considered in this thesis. A method of solution is developed in which partial differential equations satisfied by the unknown density function are derived. These partial differential equations are interpreted as generalized forms of the classical Fokker-Planck-Kolmogorov equations and are shown to imply the classical equations for certain classes of Markov processes. Extensions of the generalized equations which overcome degeneracy occurring in the steady-state case are also obtained.
The equations of Darling and Siegert are derived as special cases of the generalized equations thereby providing unity to two previously existing theories. A technique for treating non-Markov processes by studying closely related Markov processes is proposed and is seen to yield the Darling and Siegert equations directly from the classical Fokker-Planck-Kolmogorov equations.
As illustrations of their applicability, the generalized Fokker-Planck-Kolmogorov equations are presented for certain joint probability density functions associated with the linear filter. These equations are solved for the density of the output of an arbitrary linear filter excited by Markov Gaussian noise and for the density of the output of an RC filter excited by the Poisson square wave. This latter density is also found by using the extensions of the generalized equations mentioned above. Finally, some new approaches for finding the output probability density function of an RC filter-limiter-RC filter system driven by white Gaussian noise are included. The results in this case exhibit the data required for complete solution and clearly illustrate some of the mathematical difficulties inherent to the use of the generalized equations.
Resumo:
A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.
In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.
A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.
For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.