975 resultados para Fox, Greg


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project characterized and assessed the condition of coastal water resources in the Dry Tortugas National Park (DRTO) located in the Florida Keys. The goal of the assessment was to: (1) identify the state of knowledge of natural resources that exist within the DRTO, (2) summarize the state of knowledge about natural and anthropogenic stressors and threats that affected these resources, and (3) describe strategies being implemented by DRTO managers to meet their resource management goals. The park, located in the Straits of Florida 113 km (70 miles) west of Key West, is relatively small (269 square kilometers) with seven small islands and extensive shallow water coral reefs. Significant natural resources within DRTO include coastal and oceanic waters, coral reefs, reef fisheries, seagrass beds, and sea turtle and bird nesting habitats. This report focuses on marine natural resources identified by DRTO resource managers and researchers as being vitally important to the Tortugas region and the wider South Florida ecosystem. Selected marine resources included physical resources (geology, oceanography, and water quality) and biological resources (coral reef and hardbottom benthic assemblages, seagrass and algal communities, reef fishes and macro invertebrates, and wildlife [sea turtles and sea-birds]). In the past few decades, some of these resources have deteriorated because of natural and anthropogenic factors that are local and global in scale. To meet mandated goals (Chapter 1), resource managers need information on: (1) the types and condition of natural and cultural resources that occur within the park and (2) the stressors and threats that can affect those resources. This report synthesizes and summarizes information on: (1) the status of marine natural resources occurring at DRTO; and (2) types of stressors and threats currently affecting those resources at the DRTO. Based on published information, the assessment suggests that marine resources at DRTO and its surrounding region are affected by several stressors, many of which act synergistically. Of the nine resource components assessed, one resource category – water quality – received an ecological condition ranking of "Good"; two components – the nonliving portion of coral reef and hardbottom and reef fishes – received a rating of "Caution"; and two components – the biotic components of coral reef and hardbottom substrates and sea turtles – received a rating of "Significant concern" (Table E-1). Seagrass and algal communities and seabirds were unrated for ecological condition because the available information was inadequate. The stressor category of tropical storms was the dominant and most prevalent stressor in the Tortugas region; it affected all of the resource components assessed in this report. Commercial and recreational fishing were also dominant stressors and affected 78% of the resource components assessed. The most stressed resource was the biotic component of coral reef and hardbottom resources, which was affected by 76% of the stressors. Water quality was the least affected; it was negatively affected by 12% of stressors. The systematic assessment of marine natural resources and stressors in the Tortugas region pointed to several gaps in the information. For example, of the nine marine resource components reviewed in this report, the living component of coral reefs and hardbottom resources had the best rated information with 25% of stressor categories rated "Good" for information richness. In contrast, the there was a paucity of information for seagrass and algal communities and sea birds resource components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tortugas Integrated Biogeographic Assessment presents a unique analysis of demographic changes in living resource populations, as well as societal and socioeconomic benefits that resulted from the Tortugas Ecological Reserves during the first five years after their implementation. In 2001, state and federal agencies established two no-take reserves within the region as part of the Florida Keys National Marine Sanctuary. The northern reserve (Tortugas Ecological Reserve North) was established adjacent to the Dry Tortugas National Park, which was first declared a national monument in 1935. The reserves were designed to protect a healthy coral reef ecosystem that supports diverse faunal assemblages and fisheries, serves as important spawning grounds for groupers and snappers, and includes essential feeding and breeding habitats for seabirds. The unique ecological qualities of the Tortugas region were recognized as far back as 1850, and it remains an important ecosystem and research area today. The two main goals of the Tortugas Ecological Reserve Integrated Ecological Assessment were: 1) to determine if demographic changes such as increases in abundance, average size and spawning potential of exploited populations occurred in the Tortugas region after reserve implementation; and 2) whether short-term economic losses occurred to fishers displaced by the reserve. This project utilized a biogeographic approach in which information on the physical features (i.e., habitat) and oceanographic patterns were first used to determine the spatial distribution of selected fish populations within and outside the Tortugas Ecological Reserve. Before-and-after reserve implementation comparisons of selected fish populations were then conducted to determine if demographic changes occurred in reef fish assemblages. These comparisons were done for the Tortugas region and also for a subset of available habitats within the Tortugas Ecological Reserve Study Area. Social and economic impacts of the reserves were determined through: 1) analyses of commercial landings and revenues from fishers, operating in the Tortugas region before and after reserve implementation and 2) surveys of recreational tour guides. Analyses of the commercial landings and revenues excluded areas inside Dry Tortugas National Park because commercial fishing has been prohibited within park boundaries since 1992. Key findings and outcomes of this integrated ecological assessment are organized by chapter and listed below.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A baseline environmental characterization of the inner Kachemak Bay, Alaska was conducted using standardized National Status and Trends Bioeffects Program methods. Three sites near the village of Port Graham were also sampled for comparison. Concentrations of over 120 organic and metallic contaminants were analyzed. Ambient toxicity was assessed using two bioassays. A detailed benthic community condition assessment was performed. Habitat parameters (e.g. depth, salinity, temperature, dissolved oxygen, sediment grain size, and organic carbon content) that influence species and contaminant distribution were also measured at each sampling site. The following is the synopsis of findings • Sediments were mostly mixed silt and sand with pockets of muddy zones. Organic compounds (PAHs, DDTs, PCBs, chlorinated pesticides) were detected throughout the bay but at relatively low concentrations. With some exceptions, metals concentrations were relatively low and probably reflect the input of glacial runoff. • Homer Harbor had elevated concentrations of metallic and organic contaminants. Concentrations of organic contaminants measured were five to ten times higher in the harbor sites than in the open bay sites. Tributyltin was elevated in Homer Harbor relative to the other areas. • There was no evidence of residual PAHs attributable to oil spills, outside of local input in the confines of the harbor. • The benthic community is very diverse. Specific community assemblages were distributed based on depth and water clarity. Species richness and diversity was lower in the eastern end of the bay in the vicinity of the Fox River input. Abundance was also generally lower in the eastern portion of the study area, and in the intertidal areas near Homer. The eastern portions of the bay are stressed by the sediment load from glacial meltwater. • Significant toxicity was virtually absent. • The benthic fauna at Port Graham contained a significant number of species not found in Kachemak Bay. • Selected metal concentrations were elevated at Port Graham relative to Kachemak Bay, probably due to local geology. Organic contaminants were elevated at a site south of the village.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gray’s Reef National Marine Sanctuary (GRNMS) is located 32.4 km offshore of Sapelo Island, Georgia. The ecological importance of this area is related to the transition between tropical and temperate waters, and the existence of a topographically complex system of ledges. Due to its central location, GRNMS can be used as a focal site to study the accumulation and impacts of marine debris on the Atlantic continental shelf offshore of the Southeast United States. Previously, researchers characterized marine debris in GRNMS and reported that incidence of the debris at the limited densely colonized ledge sites was significantly greater than at sand or sparsely colonized live bottom, and is further influenced by the level of boating activity and physiographic characteristics (e.g., ledge height). Information gleaned from the initial marine debris characterization was used to devise a strategy for prioritizing cleanup and monitoring efforts. However, a significant gap in knowledge was the rate of debris accumulation. The primary objective of this study was to select, mark, and perform initial marine debris surveys at permanent monitoring sites within GRNMS to quantify long-term trends in types, abundance, impacts, and accumulation rates of debris. Ledge sites were selected to compare types, abundance, and accumulation rates of marine debris between a) areas of high and low use and b) short and tall ledges. Nine permanent monitoring sites were marked and initially surveyed in 2007/2008. Surveys were conducted within a 50 x 4 m transect for a total survey area of 200 square meters. All debris was removed and detailed information was taken on the types of debris, quantity, and associations with benthic fauna. Information on associations with benthic fauna included degree of entanglement, type of organism with which it is entangled or resting on, degree of fouling, and visible impacts such as tissue abrasions. Sites were re-surveyed approximately one year later to quantify new accumulation. During the initial survey, a total of ten debris items, totaling 16.3 kg in weight, were removed from two monitoring stations, both “tall” sites within the area of high boat use. Year-one accumulation totaled five items and approximately 7 kg in weight. Similar to the initial survey, all debris was found at sites in the area of high boat use. However, in contrast to the initial survey, two of these items were found on medium-height ledges. Removed items included fishing line, leaders, rope, plastic, and fabric. Although items were often encrusted in benthic biota or entangled on the ledge, impacts such as abrasions or other injuries were not observed. During the 2009 monitoring efforts, volunteer divers were trained to conduct the survey. Monitoring protocols were documented for GRNMS staff and included as an appendix of this report to enable long-term monitoring of sites. Additionally, national reconnaissance data (e.g. satellite, radar, aerial surveys) and other information on known fishing locations were examined for patterns of resource use and correlations with debris occurrence patterns. A previous model predicting the density of marine debris based on ledge features and boat use was refined and the results were used to generate a map of predicted debris density for all ledges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A baseline environmental characterization of the inner Kachemak Bay, Alaska was conducted using the sediment quality triad approach based on sediment chemistry, sediment toxicity, and benthic invertebrate community structure. The study area was subdivided into 5 strata based on geophysical and hydrodynamic patterns in the bay (eastern and western intertidal mud flats, eastern and western subtidal, and Homer Harbor). Three to seven locations were synoptically sampled within each stratum using a stratified random statistical design approach. Three sites near the village of Port Graham and two sites in the footprint of a proposed Homer Harbor expansion were also collected for comparison. Concentrations of over 120 organic and metallic contaminants were analyzed. Ambient toxicity was assessed using two amphipod bioassays. A detailed benthic community condition assessment was performed. Habitat parameters (depth, salinity, temperature, dissolved oxygen, sediment grain size, and organic carbon content) that influence species and contaminant distribution were also measured at each sampling site. Sediments were mostly mixed silt and sand; characteristic of high energy habitats, with pockets of muddy zones. Organic compounds (PAHs, DDTs, PCBs, cyclodienes, cyclohexanes) were detected throughout the bay but at relatively low concentrations. Tributyltin was elevated in Homer Harbor relative to the other strata. With a few exceptions, metals concentrations were relatively low and probably reflect the input of glacial runoff. Relative to other sites, Homer Harbor sites were shown to have elevated concentrations of metallic and organic contaminants. The Homer Harbor stratum however, is a deep, low energy depositional environment with fine grained sediment. Concentrations of organic contaminants measured were five to ten times higher in the harbor sites than in the open bay sites. Concentration of PAHs is of a particular interest because of the legacy of oil spills in the region. There was no evidence of residual PAHs attributable to oil spills, outside of local input, beyond the confines of the harbor. Concentrations were one to ten times below NOAA sediment quality guidelines. Selected metal concentrations were found to be relatively elevated compared to other data collected in the region. However, levels are still very low in the scale of NOAA’s sediment quality guidelines, and therefore appear to pose little or no ecotoxicity threat to biota. Infaunal assessment showed a diverse assemblage with more than 240 taxa recorded and abundances greater than 3,000 animals m-22 in all but a few locations. Annelid worms, crustaceans, snails, and clams were the dominant taxa accounting for 63 %, 19%, 5%, and 7 % respectively of total individuals. Specific benthic community assemblages were identified that were distributed based on depth and water clarity. Species richness and diversity was lower in the eastern end of the bay in the vicinity of the Fox River input. Abundance was also generally lower in the eastern portion of the study area, and in the intertidal areas near Homer. The eastern portions of the bay are stressed by the sediment load from glacial meltwater. Significant toxicity was virtually absent. Conditions at the sites immediately outside the existing Homer Harbor facility did not differ significantly from other subtidal locations in the open Kachemak Bay. The benthic fauna at Port Graham contained a significant number of species not found in Kachemak Bay. Contaminant conditions were variable depending on specific location. Selected metal concentrations were elevated at Port Graham and some were lower relative to Kachemak Bay, probably due to local geology. Some organic contaminants were accumulating at a depositional site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-six stocks of Pacific salmon and trout (Oncorhynchus spp.), representing evolutionary significant units (ESU), are listed as threatened or endangered under the Endangered Species Act (ESA) and six more stocks are currently being evaluated for listing. The ecological and economic consequences of these listings are large; therefore considerable effort has been made to understand and respond to these declining populations. Until recently, Pacific harbor seals (Phoca vitulina richardsi) on the west coast increased an average of 5% to 7% per year as a result of the Marine Mammal Protection Act of 1972 (Brown and Kohlman2). Pacific salmon are seasonally important prey for harbor seals (Roffe and Mate, 1984; Olesiuk, 1993); therefore quantifying and understanding the interaction between these two protected species is important for Morphobiologically sound management strategies. Because some Pacific salmonid species in a given area may be threatened or endangered, while others are relatively abundant, it is important to distinguish the species of salmonid upon which the harbor seals are preying. This study takes the first step in understanding these interactions by using molecular genetic tools for species-level identification of salmonid skeletal remains recovered from Pacific harbor seal scats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We employed ultrasonic transmitters to follow (for up to 48 h) the horizontal and vertical movements of five juvenile (6.8–18.7 kg estimated body mass) bluefin tuna (Thunnus thynnus) in the western North Atlantic (off the eastern shore of Virginia). Our objective was to document the fishes’ behavior and distribution in relation to oceanographic conditions and thus begin to address issues that currently limit population assessments based on aerial surveys. Estimation of the trends in adult and juvenile Atlantic bluefin tuna abundance by aerial surveys, and other fishery-independent measures, is considered a priority. Juvenile bluefin tuna spent the majority of their time over the continental shelf in relatively shallow water (generally less then 40 m deep). Fish used the entire water column in spite of relatively steep vertical thermal gradients (≈24°C at the surface and ≈12°C at 40 m depth), but spent the majority of their time (≈90%) above 15 m and in water warmer then 20°C. Mean swimming speeds ranged from 2.8 to 3.3 knots, and total distance covered from 152 to 289 km (82–156 nmi). Because fish generally remained within relatively con-fined areas, net displacement was only 7.7–52.7 km (4.1–28.4 nmi). Horizontal movements were not correlated with sea surface temperature. We propose that it is unlikely that juvenile bluefin tuna in this area can detect minor horizontal temperature gradients (generally less then 0.5°C/km) because of the steep vertical temperature gradients (up to ≈0.6°C/m) they experience during their regular vertical movements. In contrast, water clarity did appear to influence behavior because the fish remained in the intermediate water mass between the turbid and phytoplankton-rich plume exiting Chesapeake Bay (and similar coastal waters) and the clear oligotrophic water east of the continental shelf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Current projections of the response of the biosphere to global climatic change indicate as much as 50 to 90% spatial displacement of extratropical biomes. The mechanism of spatial shift could be dominated either by competitive displacement of northern biomes by southern biomes or by drought-induced dieback of areas susceptible to change. The current suite of global biosphere models cannot distinguish between these two processes, hence the need for a mechanistically based biome model. The first steps have been taken toward development of a rule-based, mechanistic model of regional biomes at a continental scale. ... The model is in an early stage of development and will require several enhancements, including: explicit simulation of potential evapotranspiration, extension to boreal and tropical biomes, a shift from steady-state to transient dynamics, and validation on other continents.