985 resultados para Fossil hominids
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.
Resumo:
Dwindling fossil fuel resources and pressures to reduce greenhouse gas emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is to instantaneously meet demand, to operate to standards and reduce greenhouse gas emissions. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating has been studied previously, particularly at the domestic level to provide load control, peak shave and to bene?t end-users ?nancially with lower bills, particularly in vertically integrated monopolies. In this paper a number of continuous direct load control demand response based electric water heating algorithms are modelled to test the effectiveness of wholesale electricity market signals to study the system bene?ts. The results are compared and contrasted to determine which control algorithm showed the best potential for energy savings, system marginal price savings and wind integration.
Resumo:
The rapid increase in electricity demand in Chile means a choice must be made between major investments in renewable or non-renewable sources for additional production. Current projects to develop large dams for hydropower in Chilean Patagonia impose an environmental price by damaging the natural environment. On the other hand, the increased use of fossil fuels entails an environmental price in terms of air pollution and greenhouse gas emissions contributing to climate change. This paper studies the debate on future electricity supply in Chile by investigating the preferences of households for a variety of different sources of electricity generation such as fossil fuels, large hydropower in Chilean Patagonia and other renewable energy sources. Using Double Bounded Dichotomous Choice Contingent Valuation, a novel advanced disclosure method and internal consistency test are used to elicit the willingness to pay for less environmentally damaging sources. Policy results suggest a strong preference for renewable energy sources with higher environmental prices imposed by consumers on electricity generated from fossil fuels than from large dams in Chilean Patagonia. Policy results further suggest the possibility of introducing incentives for renewable energy developments that would be supported by consumers through green tariffs or environmental premiums. Methodological findings suggest that advanced disclosure learning overcomes the problem of internal inconsistency in SB-DB estimates.
Resumo:
Various sources indicate that threats to modern cities lie in the availability of essential streams, among which energy. Most cities are strongly reliant on fossil fuels; not one case of a fully self-sufficient city is known. Engineering resilience is the rate at which a system returns to a single steady or cyclic state following a perturbation. Certain resilience, for the duration of a crisis, would improve the urban capability to survive such a period without drastic measures.
The capability of cities to prepare for and respond to energy crises in the near future is supported by greater or temporary self-sufficiency. The objective of the underlying research is a model for a city – including its surrounding rural area – that can sustain energy crises. Therefore, accurate monitoring of the current urban metabolism is needed for the use of energy. This can be used to pinpoint problem areas. Furthermore, a sustainable energy system is needed, in which the cycle is better closed. This will require a three-stepped approach of energy savings, energy exchange and sustainable energy generation. Essential is the capacity to store energy surpluses for periods of shortage (crises).
The paper discusses the need for resilient cities and the approach to make cities resilient to energy crises.
Resumo:
A single raised bog from the eastern Netherlands has been repeatedly analysed and 14C dated over the past few decades. Here we assess the within-site variability of fossil proxy data through comparing the regional
pollen, macrofossils and non-pollen palynomorphs of four of these profiles. High-resolution chronologies were obtained using 14C dating and Bayesian age-depth modelling. Where chronologies of profiles overlap, proxy curves are compared between the profiles using greyscale graphs that visualise chronological uncertainties. Even at this small spatial scale, there is considerable variability of the fossil proxy curves. Implications regarding signal (climate) and noise (internal dynamics) of the different types of fossil proxies are discussed. Single cores are of limited value for reconstructing centennial-scale climate change, and only by combining multiple cores and proxies can we obtain a reliable understanding of past environmental change and possible forcing factors (e.g., solar variability).
Resumo:
Like many of the world's subtropical regions, southern Africa is highly sensitive to changes in the earth's climate system, but a dearth of reliable palaeoenvironmental records means that relatively little is known about how regional environments have been affected over centennial to multi-millennial timescales. To a large extent this sensitivity is a function of the position of these regions at the interface between temperate and tropical circulation systems. The resulting seasonality and irregularity of rainfall have limited the development of suitable archives, such as lakes and wetlands, for the preservation of palaeoenvironmental proxies.
This paper reviews and evaluates the value of rock hyrax middens as novel palaeoenvironmental archives in southern Africa. Considered are (1) the contemporary taxonomy, distribution and ecology of hyraxes, (2) the mechanisms of hyrax midden development, their physical and chemical structure, rates of accumulation and age; and (3) the palaeoenvironmental proxies preserved within hyrax middens, including fossil pollen, stable isotopes and biomarkers. The interpretive constraints and opportunities offered by these various midden characteristics are assessed with a view to demonstrating the potential of these deposits, widespread as they are through arid and semi-arid southern Africa, in providing a more detailed and chronologically resolved view of late Quaternary palaeoenvironments across the subcontinent. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Great Cave of Niah in Sarawak (northern Borneo) came into the gaze of Western Science through the work of Alfred Russell Wallace, who came to Sarawak in the 1850s to search for ‘missing links’ in his pioneering studies of evolution and the natural history of Island Southeast Asia and Australasia. The work of Tom and Barbara Harrisson in the 1950s and 1960s placed the Great Cave, and particularly their key find, the ‘Deep Skull’, at the nexus of the evolving archaeological framework for the region: for decades the skull, dated in 1958 by adjacent charcoal to c.40,000 BP, was the oldest fossil of an anatomically modern human anywhere in the world and thus critical to ideas about human evolution and dispersal. Although several authorities later questioned the provenance and antiquity of the Deep Skull, renewed investigations of the Harrisson excavations since 2000 have shown that it can be attributed securely to a specific location in the Pleistocene stratigraphy, with direct U-series dating on a piece of the skull indicating an age for it of c.37,500 BP and the first evidence for associated human activity at the site going back to c.50,000 BP. The new work also indicates that the skull is part of a cultural deposit, perhaps a precursor to the long tradition in Borneo of processing of the dead and secondary burial. These indicators of cultural complexity chime with the complexity of the subsistence behaviour of the early users of the caves discussed by Philip Piper and Ryan Rabett in chapter ten of this volume.
Resumo:
The Klondike goldfields of Yukon, Canada, contain a key record of Pleistocene Beringia, the region of Alaska, Siberia, and Yukon that remained largely unglaciated during the late Cenozoic. A concentration of mining exposures, with relict permafrost that is locally more than 700,000 years old, provides exceptional preservation of paleoenvironmental archives and a new perspective on the nature of paleoenvironments during the Pleistocene. A critical feature is the stratigraphic association of distal tephra beds with these paleoenvironmental archives, which facilitates their regional correlation and, in many cases, provides independent ages for the paleoenvironmental assemblages. Paleoenvironmental analyses of fossil arctic ground-squirrel middens and buried vegetation indicate the presence of cryoxerophilous ("steppe-tundra") vegetation growing on well-drained substrates with deep active layers (seasonal thaw depths) during cold intervals of the Pleistocene. Studies of full-glacial paleosols and cryostratigraphic relations of associated ground ice indicate the importance of active loess deposition and surface vegetation cover in maintaining the functionally distinct mammoth-steppe biome, which supported grazing mega-fauna populations, including mammoth, horse, and bison.
Resumo:
We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada's Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose d O and d H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12-17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information. © 2012 Wolfe et al.
Resumo:
Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2-5m above the regionally prominent Old Crow tephra (124±10ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood-rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non-finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed-age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic-rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non-finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra.
Resumo:
Since the UN report by the Brundtland Committee, sustainability in the built environment has mainly been seen from a technical focus on single buildings or products. With the energy efficiency approaching 100%, fossil resources depleting and a considerable part of the world still in need of better prosperity, the playing field of a technical focus has become very limited. It will most probably not lead to the sustainable development needed to avoid irreversible effects on climate, energy provision and, not least, society.
Cities are complex structures of independently functioning elements, all of which are nevertheless connected to different forms of infrastructure, which provide the necessary sources or solve the release of waste material. With the current ambitions regarding carbon- or energy-neutrality, retreating again to the scale of a building is likely to fail. Within an urban context a single building cannot become fully resource-independent, and need not, from our viewpoint. Cities should be considered as an organism that has the ability to intelligently exchange sources and waste flows. Especially in terms of energy, it can be made clear that the present situation in most cities are undesired: there is simultaneous demand for heat and cold, and in summer a lot of excess energy is lost, which needs to be produced again in winter. The solution for this is a system that intelligently exchanges and stores essential sources, e.g. energy, and that optimally utilises waste flows.
This new approach will be discussed and exemplified. The Rotterdam Energy Approach and Planning (REAP) will be illustrated as a means for urban planning, whereas Swarm Planning will be introduced as another nature-based principle for swift changes towards sustainability
Resumo:
Grass biomethane surpasses the 60% greenhouse gas (GHG) savings relative to the fossil fuel replaced required by EU Directive 2009/28/EC. However, there are growing concerns that when the indirect effects of biofuels are taken into account, GHG savings may become negative. There has been no research to date into the indirect effects of grass biomethane; this paper aims to fill that knowledge gap. A causal-descriptive assessment is carried out and identifies the likely indirect effect of a grass biomethane industry in Ireland as a reduction in beef exports to the UK. Three main scenarios are then analyzed: an increase in indigenous UK beef production, an increase in beef imported to the UK from other countries (EU, New Zealand and Brazil), and a decrease in beef consumption leading to increased poultry consumption. The GHG emissions from each of these scenarios are determined and the resulting savings relative to fossil diesel vary between -636% and 102%. The significance of the findings is then discussed. It is the view of the authors that, while consideration of indirect effects is important, an Irish grass biomethane industry cannot be held accountable for the associated emissions. A global GHG accounting system is therefore proposed; however, the difficulty of implementing such a system is acknowledged, as is its probable ineffectualness. Such a system would not treat the source of the problem - rising consumption. The authors conclude that the most effective method of combating the indirect effects of biofuels is a reduction in general consumption. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd.
Resumo:
The Mollusca is one of the most diverse, important and well-studied invertebrate phyla; however, relationships among major molluscan taxa have long been a subject of controversy(1-9). In particular, the position of the shell-less vermiform Aplacophora and its relationship to the better-known Polyplacophora (chitons) have been problematic: Aplacophora has been treated as a paraphyletic or monophyletic group at the base of the Mollusca(3,6,8), proximate to other derived clades such as Cephalopoda(2,3,10), or as sister group to the Polyplacophora, forming the clade Aculifera(1,5,7,11,12). Resolution of this debate is required to allow the evolutionary origins of Mollusca to be reconstructed with confidence. Recent fossil finds(13-16) support the Aculifera hypothesis, demonstrating that the Palaeozoic-era palaeoloricate 'chitons' included taxa combining certain polyplacophoran and aplacophoran characteristics(5). However, fossils combining an unambiguously aplacophoran-like body with chiton-like valves have remained elusive. Here we describe such a fossil, Kulindroplax perissokomos gen. et sp. nov., from the Herefordshire Lagerstatte(17,18) (about 425 million years BP), a Silurian deposit preserving a marine biota(18) in unusual three-dimensional detail. The specimen is reconstructed three-dimensionally through physical-optical tomography(19). Phylogenetic analysis indicates that this and many other palaeoloricate chitons are crown-group aplacophorans.
Resumo:
The use of the organic fraction of municipal solid waste crops has received considerable attention as a sustainable feedstock that can replace fossil fuels for the production of renewable energy. Therefore, municipal bin-waste in the form of hay was investigated as a potential energy crop for fermentable sugars production. Hydrolysis of hay by dilute phosphoric acid was carried out in autoclave parr reactor, where reactor temperature (135-200 degrees c) and acid concentration (2.5-10% (w/w)) were examined. Analysis of the decomposition rate of hemicellulosic biomass was undertaken using HPLC of the reaction products. Xylose production reached a maximum value of 13.5 g/100 g dry mass corresponding to a yield of 67% at the best identified conditions of 2.5 wt% H3PO4, 175 degrees C, 10 min reaction time, and at 5 wt% H3PO4, 150 degrees C, and 5 min reaction time. For glucose, an average yield of 25% was obtained at 5 wt% H3PO4, 175 degrees C and 30 min. Glucose degradation to HMF was achieved at 10 wt% H3PO4 and 200 degrees C. The maximum yield for produced arabinose was an average of 3 g/100 g dry. mass corresponding to 100% of the total possible arabinose. The kinetic study of the acid hydrolysis was also carried out using the Saeman and the Two-fraction models. It was found for both models that the kinetic constants (k) depend on the acid concentration and temperature. For xylose and arabinose it was found that the rate of formation was more favoured than the rate of degradation. By contrast, for glucose it was found that glucose degradation was occurring faster than glucose formation. It can be concluded that dilute phosphoric acid hydrolysis of hay crop is feasible for the production of fermentable sugars which are essential for bioethanol synthesis.
Resumo:
Plant and animal biodiversity can be studied by obtaining DNA directly from the environment. This new approach in combination with the use of generic barcoding primers (metabarcoding) has been suggested as complementary or alternative to traditional biodiversity monitoring in ancient soil sediments. However, the extent to which metabarcoding truly reflects plant composition remains unclear, as does its power to identify species with no pollen or macrofossil evidence. Here, we compared pollen-based and metabarcoding approaches to explore the Holocene plant composition around two lakes in central Scandinavia. At one site, we also compared barcoding results with those obtained in earlier studies with species-specific primers. The pollen analyses revealed a larger number of taxa (46), of which the majority (78%) was not identified by metabarcoding. The metabarcoding identified 14 taxa (MTUs), but allowed identification to a lower taxonomical level. The combined analyses identified 52 taxa. The barcoding primers may favour amplification of certain taxa, as they did not detect taxa previously identified with species-specific primers. Taphonomy and selectiveness of the primers are likely the major factors influencing these results. We conclude that metabarcoding from lake sediments provides a complementary, but not an alternative, tool to pollen analysis for investigating past flora. In the absence of other fossil evidence, metabarcoding gives a local and important signal from the vegetation, but the resulting assemblages show limited capacity to detect all taxa, regardless of their abundance around the lake. We suggest that metabarcoding is followed by pollen analysis and the use of species-specific primers to provide the most comprehensive signal from the environment. © 2013 Blackwell Publishing Ltd.