744 resultados para Floods
Resumo:
The gas injection has become the most important IOR process in the United States. Furthermore, the year 2006 marks the first time the gas injection IOR production has surpassed that of steam injection. In Brazil, the installation of a petrochemical complex in the Northeast of Brazil (Bahia State) offers opportunities for the injection of gases in the fields located in the Recôncavo Basin. Field-scale gas injection applications have almost always been associated with design and operational difficulties. The mobility ratio, which controls the volumetric sweep, between the injected gas and displaced oil bank in gas processes, is typically unfavorable due to the relatively low viscosity of the injected gas. Furthermore, the difference between their densities results in severe gravity segregation of fluids in the reservoirs, consequently leading to poor control in the volumetric sweep. Nowadays, from the above applications of gas injection, the WAG process is most popular. However, in attempting to solve the mobility problems, the WAG process gives rise to other problems associated with increased water saturation in the reservoir including diminished gas injectivity and increased competition to the flow of oil. The low field performance of WAG floods with oil recoveries in the range of 5-10% is a clear indication of these problems. In order to find na effective alternative to WAG, the Gas Assisted Gravity Drainage (GAGD) was developed. This process is designed to take advantage of gravity force to allow vertical segregation between the injected CO2 and reservoir crude oil due to their density difference. This process consists of placing horizontal producers near the bottom of the pay zone and injecting gás through existing vertical wells in field. Homogeneous models were used in this work which can be extrapolated to commercial application for fields located in the Northeast of Brazil. The simulations were performed in a CMG simulator, the STARS 2007.11, where some parameters and their interactions were analyzed. The results have shown that the CO2 injection in GAGD process increased significantly the rate and the final recovery of oil
Resumo:
In Brazil and around the world, oil companies are looking for, and expected development of new technologies and processes that can increase the oil recovery factor in mature reservoirs, in a simple and inexpensive way. So, the latest research has developed a new process called Gas Assisted Gravity Drainage (GAGD) which was classified as a gas injection IOR. The process, which is undergoing pilot testing in the field, is being extensively studied through physical scale models and core-floods laboratory, due to high oil recoveries in relation to other gas injection IOR. This process consists of injecting gas at the top of a reservoir through horizontal or vertical injector wells and displacing the oil, taking advantage of natural gravity segregation of fluids, to a horizontal producer well placed at the bottom of the reservoir. To study this process it was modeled a homogeneous reservoir and a model of multi-component fluid with characteristics similar to light oil Brazilian fields through a compositional simulator, to optimize the operational parameters. The model of the process was simulated in GEM (CMG, 2009.10). The operational parameters studied were the gas injection rate, the type of gas injection, the location of the injector and production well. We also studied the presence of water drive in the process. The results showed that the maximum vertical spacing between the two wells, caused the maximum recovery of oil in GAGD. Also, it was found that the largest flow injection, it obtained the largest recovery factors. This parameter controls the speed of the front of the gas injected and determined if the gravitational force dominates or not the process in the recovery of oil. Natural gas had better performance than CO2 and that the presence of aquifer in the reservoir was less influential in the process. In economic analysis found that by injecting natural gas is obtained more economically beneficial than CO2
Resumo:
Este trabajo está enfocado al planteamiento y propuesta del modelo a considerar pretende abordar desde la periferia de la provincia del Azuay hacia su centro cantonal, buscando obtener un modelo mucho más cercano a una realidad general y las formas de actuación desde aquellos centros carentes de recursos hasta el mayor centro generador de los mismos. Se ha empezado abordando la problemática general de los riesgos que afectan en todo sentido a los seres humanos, que permitan definir sobre cuales se podrían actuar en la zona de estudio, para esto se determinó conceptualizaciones de territorio y riesgos como: caracterización de los fenómenos de riesgo en el Azuay en una perspectiva histórica; con énfasis en acontecimientos de magnitud en los últimos 25 años, definición de las tipologías de riesgos y conceptualizaciones de la Ordenación Territorial, para establecer la interrelación de conceptos y acciones que permita entender a la innovación como la capacidad de introducir nuevos métodos que apunten a mejorar las condiciones de competitividad del territorio, estudiando los posibles instrumentos de aplicación y la relación intrínseca con la administración pública. Finalmente se estableció un diagnóstico general de la provincia que permitió centrarse en tres fenómenos de riesgos: las fallas geológicas, las inundaciones y deslizamientos de masa, que se han convertido en los principales factores de afección. Con el marco teórico definido y el diagnostico establecido fue posible que en base a varios estudios preliminares en América Latina y Europa sobre situaciones de riesgos similares; se realice un planteamiento para enfrentar las situaciones de peligro de la Provincia, las alternativas de soluciones, de mitigaciones y prevención, que sumado a la gestión administrativa local y regional, permita establecer mecanismos estratégicos aplicables en las fases de la Ordenación Territorial. La propuesta plantea entre sus más importantes resultados: la administración responsable, ámbito temporal de validez de las acciones, establece modelos de ocupación inmediata de zonas seguras y ocupación diferida de áreas con riesgo aceptable, que hacen posible enfrentar estos fenómenos naturales y disminuir las pérdidas de vidas humanas.
Resumo:
In Brazilian semiarid region, the majority of water bodies are temporary and the biodiversity in these ecosystems is poorly known. The goal of this study was to describe the temporal variation of benthic macroinvertebrates in an intermittent stream in the Brazilian semiarid region. From March to July of 2009, surveys of benthic macroinvertebrates and water physiochemical parameters were done in a first order stream located at Piranhas-Açu River basin. 25 macroinvertebrates families were found, 21 belonging to Insecta class. The chironomids were the most abundant group during all study period and were represented by 19 genus. The largest densities and taxonomic richness were seen in the drying phase of the stream while the smallest values were found in the period with the heaviest rainfalls ( wet phase ). Only the families Chironomidae and Ceratopogonidae were found during all study period, suggesting that these groups have better adaptations to support floods and droughts. Furthermore, these two groups seemed to be pioneering in this stream. Among the chironomids, Paratendipes dominated the period of floods while Tanytarsus were more abundant in the drying phase . This study showed that hydrological fluctuation is the main force influencing the macroinvertebrate community in this stream, therefore, efforts seeking the conservation and management of Brazilian semiarid water bodies should consider this high natural variability in flow regime
Resumo:
This dissertation examines the quality of hazard mitigation elements in a coastal, hazard prone state. I answer two questions. First, in a state with a strong mandate for hazard mitigation elements in comprehensive plans, does plan quality differ among county governments? Second, if such variation exists, what drives this variation? My research focuses primarily on Florida’s 35 coastal counties, which are all at risk for hurricane and flood hazards, and all fall under Florida’s mandate to have a comprehensive plan that includes a hazard mitigation element. Research methods included document review to rate the hazard mitigation elements of all 35 coastal county plans and subsequent analysis against demographic and hazard history factors. Following this, I conducted an electronic, nationwide survey of planning professionals and academics, informed by interviews of planning leaders in Florida counties. I found that hazard mitigation element quality varied widely among the 35 Florida coastal counties, but were close to a normal distribution. No plans were of exceptionally high quality. Overall, historical hazard effects did not correlate with hazard mitigation element quality, but some demographic variables that are associated with urban populations did. The variance in hazard mitigation element quality indicates that while state law may mandate, and even prescribe, hazard mitigation in local comprehensive plans, not all plans will result in equal, or even adequate, protection for people. Furthermore, the mixed correlations with demographic variables representing social and disaster vulnerability shows that, at least at the county level, vulnerability to hazards does not have a strong effect on hazard mitigation element quality. From a theory perspective, my research is significant because it compares assumptions about vulnerability based on hazard history and demographics to plan quality. The only vulnerability-related variables that appeared to correlate, and at that mildly so, with hazard mitigation element quality, were those typically representing more urban areas. In terms of the theory of Neo-Institutionalism and theories related to learning organizations, my research shows that planning departments appear to have set norms and rules of operating that preclude both significant public involvement and learning from prior hazard events.
Resumo:
The damage Hurricane Sandy caused had far-reaching repercussions up and down the East Coast of the United States. Vast coastal flooding accompanied the storm, inundating homes, businesses, and utility and emergency facilities. Since the storm, projects to mitigate similar future floods have been scrutinized. Such projects not only need to keep out floodwaters but also be designed to withstand the effect that climate change might have on rising sea levels and increased flood risk. In this study, we develop an economic model to assess the costs and benefits of a berm (sea wall) to mitigate the effects of flooding from a large storm. We account for the lifecycle costs of the project, which include those for the upfront construction of the berm, ongoing maintenance, land acquisition, and wetland and recreation zone construction. Benefits of the project include avoided fatalities, avoided residential and commercial damages, avoided utility and municipal damages, recreational and health benefits, avoided debris removal expenses, and avoided loss of function of key transportation and commercial infrastructure located in the area. Our estimate of the beneficial effects of the berm includes ecosystem services from wetlands and health benefits to the surrounding community from a park and nature system constructed along the berm. To account for the effects of climate change and verify that the project will maintain its effectiveness over the long term, we allow the risk of flooding to increase over time. Over our 50-year time horizon, we double the risk of 100- and 500-year flood events to account for the effects of sea level rise on coastal flooding. Based on the economic analysis, the project is highly cost beneficial over its 50-year timeframe. This analysis demonstrates that climate change adaptation investments can be cost beneficial even though they mitigate the impacts of low-probability, high-consequence events.
Resumo:
El objetivo de este estudio de caso es analizar el agua como factor reordenador del territorio, en el caso específico de las inundaciones sucedidas en el 2011 en el territorio de la Universidad de la Sabana. Durante la ola invernal del 2011 todo el país sufrió las consecuencias de los errores en la planeación de los asentamientos humanos. La no inclusión de la gestión del riesgo dentro del Ordenamiento Territorial, sumado la falta de comprensión de las dinámicas del territorio y del rol del agua como factor ordenador del territorio, causaron inundaciones y desastres naturales que afectaron la vida de miles de ciudadanos, entre eso los estudiantes, profesores y demás afectados por las inundaciones de la Universidad de la Sabana.
Resumo:
Face à Directiva 2007/60/CE relativa à avaliação e gestão do risco de inundações, ao Decreto-Lei nº 344/2007 que aprova o Regulamento de Segurança de Barragens, ao aumento de áreas urbanizadas e às projecções dos modelos de clima para o fim do século, que apontam para o aumento da frequência e da intensidade da ocorrência de inundações causadas por eventos de precipitação intensa de curta duração, é crucial a definição de regras de operação nos reservatórios com controlo de cheias. O Reservatório de Magos pertence à bacia hidrográfica do rio Tejo, está situado no Concelho de Salvaterra de Magos e tem como usos principais a rega e o controlo de cheias. Este trabalho tem como objecto de estudo a definição das regras de operação (restrição no caudal descarregado) do Reservatório de Magos para controlo de cheias no troço a jusante. São aplicados o modelo hidrológico HEC-HMS 3.1.0, o modelo hidráulico HEC-RAS 3.1.3 e o modelo de simulação de reservatórios HEC-ResSim 3.O para o cálculo do hidrograma de cheia, da zona inundável e para simulação do balanço de água no reservatório, respectivamente. Como resultado são apresentadas as regras de operação (caudal máximo e mínimo a descarregar) do Reservatório de Magos para controlo da zona inundável a jusante, no caso de um evento de cheia. /ABSTRACT: Based on the Directive 2007/60/CE related to the Assessment and Management of Flood Risks, on the Decree-Law n. o 344/2007 which approves the Regulation for Dam Safety, the increased urban areas and to the projections of climate models by the end of the century which is pointing to an increased frequency and intensity of occurrence of floods caused by intense rainfall events of short duration, establishing rules of operation for flood control in reservoirs becomes crucial. The Magos Reservoir belongs to the river Tagus basin, located in the county of Salvaterra de Magos and has as its main uses the irrigation and flood control. This study aims to establish the rules of operation (flow discharged restriction) of the Reservoir of Magos for flood control in the downstream reach. The methodology used in the present work includes the application of the Hydrological model HEC-HMS 3.1.0, the Hydraulic model HEC-RAS 3.1.3 and a reservoir simulation model HEC-ResSim 3.0 to calculate the hydrograph of peak discharge, floodplain zone and simulate reservoir operations, respectively. As a result, the rules of operation (maximum flow and minimum discharge) of Magos Reservoir for flood control in a downstream reach in case of flood event are presented.
Resumo:
Ciudad Cortés, en un pequeño pueblo localizado al sur del país, que ha sido afectado desde hace varios años por las inundaciones de los ríos Térraba y Balsar, se han estimado los costos de la infraestructura dañada en áreas de alto riesgo. De acuerdo con esta información, se han seleccionado ejemplos de construcciones, realizando cálculos económicos y relacionados con un mapa diseñado con curvas isográficas por cada metro. El mapa final muestra las áreas de riesgo y algunas estrategias para reducir las pérdidas de vidas y propiedades.Abstract:In a small town located in the southern part of the country, that is affected since many years by the floods Térraba and Balsar rivers, we try to estimate the costofthc infrastructure which isbuild in the areas of high risk. According with this information, we seLcct a sample of buildings, made a calculation of its econornic value and related them with a map designed with hipsographic contours each one-meter. We obtain at the end a map that shows risks areas and sorne strategies for reducing ¡oss of lives and properties.