946 resultados para Fission yeast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vacuolar protein aminopeptidase I (API) uses a novel cytoplasm-to-vacuole targeting (Cvt) pathway. Complementation analysis of yeast mutants defective for cytoplasm-to-vacuole protein targeting (cvt) and autophagy (apg) revealed seven overlapping complementation groups between these two sets of mutants. In addition, all 14 apg complementation groups are defective in the delivery of API to the vacuole. Similarly, the majority of nonoverlapping cvt complementation groups appear to be at least partially defective in autophagy. Kinetic analyses of protein delivery rates indicate that autophagic protein uptake is induced by nitrogen starvation, whereas Cvt is a constitutive biosynthetic pathway. However, the machinery governing Cvt is affected by nitrogen starvation as targeting defects resulting from API overexpression can be rescued by induction of autophagy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have reported previously the isolation and genetic characterization of mutations in the gene encoding the largest subunit of yeast RNA polymerase II (RNAPII), which lead to 6-azauracil (6AU)-sensitive growth. It was suggested that these mutations affect the functional interaction between RNAPII and transcription-elongation factor TFIIS because the 6AU-sensitive phenotype of the mutant strains was similar to that of a strain defective in the production of TFIIS and can be suppressed by increasing the dosage of the yeast TFIIS-encoding gene, PPR2, RNAPIIs were purified and characterized from two independent 6AU-sensitive yeast mutants and from wild-type (wt) cells. In vitro, in the absence of TFIIS, the purified wt polymerase and the two mutant polymerases showed similar specific activity in polymerization, readthrough at intrinsic transcriptional arrest sites and nascent RNA cleavage. In contrast to the wt polymerase, both mutant polymerases were not stimulated by the addition of a 3-fold molar excess of TFIIS in assays of promoter-independent transcription, readthrough or cleavage. However, stimulation of the ability of the mutant RNAPIIs to cleave nascent RNA and to read through intrinsic arrest sites was observed at TFIIS:RNAPII molar ratios greater than 600:1. Consistent with these findings, the binding affinity of the mutant polymerases for TFIIS was found to be reduced by more than 50-fold compared with that of the wt enzyme. These studies demonstrate that TFIIS has an important role in the regulation of transcription by yeast RNAPII and identify a possible binding site for TFIIS on RNAPII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleotide excision repair (NER) of ultraviolet light-damaged DNA in eukaryotes requires a large number of highly conserved protein factors. Recent studies in yeast have suggested that NER involves the action of distinct protein subassemblies at the damage site rather than the placement there of a "preformed repairosome" containing all the essential NER factors. Neither of the two endonucleases, Rad1-Rad10 and Rad2, required for dual incision, shows any affinity for ultraviolet-damaged DNA. Rad1-Rad10 forms a ternary complex with the DNA damage recognition protein Rad14, providing a means for targeting this nuclease to the damage site. It has remained unclear how the Rad2 nuclease is targeted to the DNA damage site and why mutations in the human RAD2 counterpart, XPG, result in Cockayne syndrome. Here we examine whether Rad2 is part of a higher order subassembly. Interestingly, we find copurification of Rad2 protein with TFIIH, such that TFIIH purified from a strain that overexpresses Rad2 contains a stoichiometric amount of Rad2. By several independent criteria, we establish that Rad2 is tightly associated with TFIIH, exhibiting an apparent dissociation constant < 3.3 x 10(-9) M. These results identify a novel subassembly consisting of TFIIH and Rad2, which we have designated as nucleotide excision repair factor 3. Association with TFIIH provides a means of targeting Rad2 to the damage site, where its endonuclease activity would mediate the 3' incision. Our findings are important for understanding the manner of assembly of the NER machinery and they have implications for Cockayne syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae RAD52 gene plays a pivotal role in genetic recombination. Here we demonstrate that yeast Rad52 is a DNA binding protein. To show that the interaction between Rad52 and DNA is direct and not mediated by other yeast proteins and to facilitate protein purification, a recombinant expression system was developed. The recombinant protein can bind both single- and double-stranded DNA and the addition of either Mg2+ or ATP does not enhance the binding of single-stranded DNA. Furthermore, a DNA binding domain was found in the evolutionary conserved N terminus of the protein. More importantly, we show that the protein stimulates DNA annealing even in the presence of a large excess of nonhomologous DNA. Rad52-promoted annealing follows second-order kinetics and the rate is 3500-fold faster than that of the spontaneous reaction. How this annealing activity relates to the genetic phenotype associated with rad52 mutant cells is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All eukaryotes that have been studied to date possess the ability to detect and degrade transcripts that contain a premature signal for the termination of translation. This process of nonsense-mediated RNA decay has been most comprehensively studied in the yeast Saccharomyces cerevisiae where at least three trans-acting factors (Upf1p through Upf3P) are required. We have cloned cDNAs encoding human and murine homologues of Upf1p, termed rent1 (regulator of nonsense transcripts). Rent1 is the first identified mammalian protein that contains all of the putative functional elements in Upf1p including zinc finger-like and NTPase domains, as well as all motifs common to members of helicase superfamily I. Moreover, expression of a chimeric protein, N and C termini of Upf1p, complements the Upf1p-deficient phenotype in yeast. Thus, despite apparent differences between yeast and mammalian nonsense-mediated RNA decay, these data suggest that the two pathways use functionally related machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many biological processes rely upon protein-protein interactions. Hence, detailed analysis of these interactions is critical for their understanding. Due to the complexities involved, genetic approaches are often needed. In yeast and phage, genetic characterizations of protein complexes are possible. However, in multicellular organisms, such characterizations are limited by the lack of powerful selection systems. Herein we describe genetic selections that allow single amino acid changes that disrupt protein-protein interactions to be selected from large libraries of randomly generated mutant alleles. The strategy, based on a yeast reverse two-hybrid system, involves a first-step negative selection for mutations that affect interaction, followed by a second-step positive selection for a subset of these mutations that maintain expression of full-length protein (two-step selection). We have selected such mutations in the transcription factor E2F1 that affect its ability to heterodimerize with DP1. The mutations obtained identified a putative helix in the marked box, a region conserved among E2F family members, as an important determinant for interaction. This two-step selection procedure can be used to characterize any interaction domain that can be tested in the two-hybrid system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GAL11 gene encodes an auxiliary transcription factor required for full expression of many genes in yeast. The GAL11-encoded protein (Gal11p) has recently been shown to copurify with the holoenzyme of RNA polymerase II. Here we report that Gal11p stimulates basal transcription in a reconstituted transcription system composed of recombinant or highly purified transcription factors, TFIIB, TFIIE, TFIIF, TFIIH, and TATA box-binding protein and core RNA polymerase II. We further demonstrate that each of the two domains of Gal11p essential for in vivo function respectively participates in the binding to the small and large subunits of TFIIE. The largest subunit of RNA polymerase II was coprecipitated by anti-hemagglutinin epitope antibody from crude extract of GAL11 wild type yeast expressing hemagglutinintagged small subunit of TFIIE. Such a coprecipitation of the RNA polymerase subunit was seen but in a greatly reduced amount, if extract was prepared from gal11 null yeast. In light of these findings, we suggest that Gal11p stimulates promoter activity by enhancing an association of TFIIE with the preinitiation complex in the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly of functional proteins from fragments in vivo has been recently described for several proteins, including the secreted maltose binding protein in Escherichia coli. Here we demonstrate for the first time that split gene products can function within the eukaryotic secretory system. Saccharomyces cerevisiae strains able to use sucrose produce the enzyme invertase, which is targeted by a signal peptide to the central secretory pathway and the periplasmic space. Using this enzyme as a model we find the following: (i) Polypeptide fragments of invertase, each containing a signal peptide, are independently translocated into the endoplasmic reticulum (ER) are modified by glycosylation, and travel the entire secretory pathway reaching the yeast periplasm. (ii) Simultaneous expression of independently translated and translocated overlapping fragments of invertase leads to the formation of an enzymatically active complex, whereas individually expressed fragments exhibit no activity. (iii) An active invertase complex is assembled in the ER, is targeted to the yeast periplasm, and is biologically functional, as judged by its ability to facilitate growth on sucrose as a single carbon source. These observation are discussed in relation to protein folding and assembly in the ER and to the trafficking of proteins through the secretory pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exact role of the pfmdr1 gene in the emergence of drug resistance in the malarial parasite Plasmodium falciparum remains controversial. pfmdr1 is a member of the ATP binding cassette (ABC) superfamily of transporters that includes the mammalian P-glycoprotein family. We have introduced wild-type and mutant variants of the pfmdr1 gene in the yeast Saccharomyces cerevisiae and have analyzed the effect of pfmdr1 expression on cellular resistance to quinoline-containing antimalarial drugs. Yeast transformants expressing either wild-type or a mutant variant of mouse P-glycoprotein were also analyzed. Dose-response studies showed that expression of wild-type pfmdr1 causes cellular resistance to quinine, quinacrine, mefloquine, and halofantrine in yeast cells. Using quinacrine as substrate, we observed that increased resistance to this drug in pfmdr1 transformants was associated with decreased cellular accumulation and a concomitant increase in drug release from preloaded cells. The introduction of amino acid polymorphisms in TM11 of Pgh-1 (pfmdr1 product) associated with drug resistance in certain field isolates of P. falciparum abolished the capacity of this protein to confer drug resistance. Thus, these findings suggest that Pgh-1 may act as a drug transporter in a manner similar to mammalian P-glycoprotein and that sequence variants associated with drug-resistance pfmdr1 alleles behave as loss of function mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have indicated that degradation of certain mRNAs is tightly coupled to their translation, whereas, in contrast, other observations suggested that translation can be inhibited without changing the stability of the mRNA. We have addressed this question with the use of altered CYC1 alleles, which encode iso-1-cytochrome c in the yeast Saccharomyces cerevisiae. The cyc1-1249 mRNA, which lacks all in-frame and out-of-frame AUG triplets, was as stable as the normal mRNA. This finding established that translation is not required for the degradation of CYC1 mRNAs. Furthermore, poly(G)18 tracks were introduced within the CYC1 mRNA translated regions to block exonuclease degradation. The recovery of 3' fragments revealed that the translatable and the AUG-deficient mRNAs are both degraded 5'-->3'. Also, the increased stability of CYC1 mRNAs in xrn1-delta strains lacking Xrn1p, the major 5'-->3' exonuclease, established that the normal and AUG-deficient mRNAs are degraded by the same pathway. In addition, deadenylylation, which activates the action of Xrn1p, occurred at equivalent rates in both normal and AUG-deficient mRNAs. We conclude that translation is not required for the normal degradation of CYC1 mRNAs, and that translatable and untranslated mRNAs are degraded by the same pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of the expression of an algal phytochrome cDNA in the methylotrophic yeast Pichia pastoris led to time-dependent formation of photoactive holophytochrome without the addition of exogenous bilins. Both in vivo and in vitro difference spectra of this phytochromic species are very similar to those of higher plant phytochrome A, supporting the conclusion that this species possesses a phytochromobilin prosthetic group. Zinc blot analyses confirm that a bilin chromophore is covalently bound to the algal phytochrome apoprotein. The hypothesis that P. pastoris contains phytochromobilin synthase, the enzyme that converts biliverdin IX alpha to phytochromobilin, was also addressed in this study. Soluble extracts from P. pastoris were able to convert biliverdin to a bilin pigment, which produced a native difference spectrum upon assembly with oat apophytochrome A. HPLC analyses confirm that biliverdin is converted to both 3E- and 3Z-isomers of phytochromobilin. These investigations demonstrate that the ability to synthesize phytochromobilin is not restricted to photosynthetic organisms and support the hypothesis of a more widespread distribution of the phytochrome photoreceptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast SIN1 protein is a nuclear protein that together with other proteins behaves as a transcriptional repressor of a family of genes. In addition, sin1 mutants are defective in proper mitotic chromosome segregation. In an effort to understand the basis for these phenotypes, we employed the yeast two-hybrid system to identify proteins that interact with SIN1 in vivo. Here we demonstrate that CDC23, a protein known to be involved in sister chromatid separation during mitosis, is able to directly interact with SIN1. Furthermore, using recombinant molecules in vitro, we show that the N terminal of SIN1 is sufficient to bind a portion of CDC23 consisting solely of tetratrico peptide repeats. Earlier experiments identified the C-terminal domain of SIN1 to be responsible for interaction with a protein that binds the regulatory region of HO, a gene whose transcription is repressed by SIN1. Taken together with the results presented here, we suggest that SIN1 is a chromatin protein having at least a dual function: The N terminal of SIN1 interacts with the tetratrico peptide repeat domains of CDC23, a protein involved in chromosome segregation, whereas the C terminal of SIN1 binds proteins involved in transcriptional regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most intracellular pathogens avoid lysing their host cells during invasion by wrapping themselves in a vacuolar membrane. This parasitophorous vacuole membrane (PVM) is often retained, serving as a critical transport interface between the parasite and the host cell cytoplasm. To test whether the PVM formed by the parasite Toxoplasma gondii is derived from host cell membrane or from lipids secreted by the parasite, we used time-resolved capacitance measurements and video microscopy to assay host cell surface area during invasion. We observed no significant change in host cell surface area during PVM formation, demonstrating that the PVM consists primarily of invaginated host cell membrane. Pinching off of the PVM from the host cell membrane occurred after an unexpected delay (34-305 sec) and was seen as a 0.219 +/- 0.006 pF drop in capacitance, which corresponds well to the predicted surface area of the entire PVM (30-33 microns2). The formation and closure of a fission pore connecting the extracellular medium and the vacuolar space was detected as the PVM pinched off. This final stage of parasite entry was accomplished without any breach in cell membrane integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudohyphal differentiation in Saccharomyces cerevisiae was first described as a response of diploid cells to nitrogen limitation. Here we report that haploid and diploid starch-degrading S. cerevisiae strains were able to switch from a yeast form to a filamentous pseudohyphal form in response to carbon limitation in the presence of an ample supply of nitrogen. Two genes, MSS10 and MUC1, were cloned and shown to be involved in pseudohyphal differentiation and invasive growth. The deletion of MSS10 resulted in extremely reduced amounts of pseudohyphal differentiation and invasive growth, whereas the deletion of MUC1 abolished pseudohyphal differentiation and invasive growth completely. Mss10 appears to be a transcriptional activator that responds to nutrient limitation and coregulates the expression of MUC1 and the STA1-3 glucoamylase genes, which are involved in starch degradation. MUC1 encodes a 1367-amino acid protein, containing several serine/threonine-rich repeats. Muc1 is a putative integral membrane-bound protein, similar to mammalian mucin-like membrane proteins that have been implicated to play a role in the ability of cancer cells to invade other tissues.