914 resultados para Fine spatial scale
Resumo:
Intertidal flats of the estuarine macro-intertidal Baie des Veys (France) were investigated to identify spatial features of sediment and microphytobenthos (MPB) in April 2003. Gradients occurred within the domain, and patches were identified close to vegetated areas or within the oyster-farming areas where calm physical conditions and biodeposition altered the sediment and MPB landscapes. Spatial patterns of chl a content were explained primarily by the influence of sediment features, while bed elevation and compaction brought only minor insights into MPB distribution regulation. The smaller size of MPB patches compared to silt patches revealed the interplay between physical structure defining the sediment landscape, the biotic patches that they contain, and that median grain-size is the most important parameter in explaining the spatial pattern of MPB. Small-scale temporal dynamics of sediment chl a content and grain-size distribution were surveyed in parallel during 2 periods of 14 d to detect tidal and seasonal variations. Our results showed a weak relationship between mud fraction and MPB biomass in March, and this relationship fully disappeared in July. Tidal exposure was the most important parameter in explaining the summer temporal dynamics of MPB. This study reveals the general importance of bed elevation and tidal exposure in muddy habitats and that silt content was a prime governing physical factor in winter. Biostabilisation processes seemed to behave only as secondary factors that could only amplify the initial silt accumulation in summer rather than primary factors explaining spatial or long-term trends of sediment changes.
Resumo:
In order to optimize frontal detection in sea surface temperature fields at 4 km resolution, a combined statistical and expert-based approach is applied to test different spatial smoothing of the data prior to the detection process. Fronts are usually detected at 1 km resolution using the histogram-based, single image edge detection (SIED) algorithm developed by Cayula and Cornillon in 1992, with a standard preliminary smoothing using a median filter and a 3 × 3 pixel kernel. Here, detections are performed in three study regions (off Morocco, the Mozambique Channel, and north-western Australia) and across the Indian Ocean basin using the combination of multiple windows (CMW) method developed by Nieto, Demarcq and McClatchie in 2012 which improves on the original Cayula and Cornillon algorithm. Detections at 4 km and 1 km of resolution are compared. Fronts are divided in two intensity classes (“weak” and “strong”) according to their thermal gradient. A preliminary smoothing is applied prior to the detection using different convolutions: three type of filters (median, average and Gaussian) combined with four kernel sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) and three detection window sizes (16 × 16, 24 × 24 and 32 × 32 pixels) to test the effect of these smoothing combinations on reducing the background noise of the data and therefore on improving the frontal detection. The performance of the combinations on 4 km data are evaluated using two criteria: detection efficiency and front length. We find that the optimal combination of preliminary smoothing parameters in enhancing detection efficiency and preserving front length includes a median filter, a 16 × 16 pixel window size, and a 5 × 5 pixel kernel for strong fronts and a 7 × 7 pixel kernel for weak fronts. Results show an improvement in detection performance (from largest to smallest window size) of 71% for strong fronts and 120% for weak fronts. Despite the small window used (16 × 16 pixels), the length of the fronts has been preserved relative to that found with 1 km data. This optimal preliminary smoothing and the CMW detection algorithm on 4 km sea surface temperature data are then used to describe the spatial distribution of the monthly frequencies of occurrence for both strong and weak fronts across the Indian Ocean basin. In general strong fronts are observed in coastal areas whereas weak fronts, with some seasonal exceptions, are mainly located in the open ocean. This study shows that adequate noise reduction done by a preliminary smoothing of the data considerably improves the frontal detection efficiency as well as the global quality of the results. Consequently, the use of 4 km data enables frontal detections similar to 1 km data (using a standard median 3 × 3 convolution) in terms of detectability, length and location. This method, using 4 km data is easily applicable to large regions or at the global scale with far less constraints of data manipulation and processing time relative to 1 km data.
Resumo:
A moratorium on further bivalve leasing was established in 1999–2000 in Prince Edward Island (Canada). Recently, a marine spatial planning process was initiated explore potential mussel culture expansion in Malpeque Bay. This study focuses on the effects of a projected expansion scenario on productivity of existing leases and available suspended food resources. The aim is to provide a robust scientific assessment using available datasets and three modelling approaches ranging in complexity: (1) a connectivity analysis among culture areas; (2) a scenario analysis of organic seston dynamics based on a simplified biogeochemical model; and (3) a scenario analysis of phytoplankton dynamics based on an ecosystem model. These complementary approaches suggest (1) new leases can affect existing culture both through direct connectivity and through bay-scale effects driven by the overall increase in mussel biomass, and (2) a net reduction of phytoplankton within the bounds of its natural variation in the area.
Resumo:
Understanding and predicting patterns of distribution and abundance of marine resources is important for con- servation and management purposes in small-scale artisanal fisheries and industrial fisheries worldwide. The goose barnacle (Pollicipes pollicipes) is an important shellfish resource and its distribution is closely related to wave exposure at different spatial scales. We modelled the abundance (percent coverage) of P. pollicipes as a function of a simple wave exposure index based on fetch estimates from digitized coastlines at different spatial scales. The model accounted for 47.5% of the explained deviance and indicated that barnacle abundance increases non-linearly with wave exposure at both the smallest (metres) and largest (kilometres) spatial scales considered in this study. Distribution maps were predicted for the study region in SW Portugal. Our study suggests that the relationship between fetch-based exposure indices and P. pollicipes percent cover may be used as a simple tool for providing stakeholders with information on barnacle distribution patterns. This information may improve assessment of harvesting grounds and the dimension of exploitable areas, aiding management plans and support- ing decision making on conservation, harvesting pressure and surveillance strategies for this highly appreciated and socio- economically important marine resource.
Resumo:
Recent research on affective processing has suggested that low spatial frequency information of fearful faces provide rapid emotional cues to the amygdala, whereas high spatial frequencies convey fine-grained information to the fusiform gyrus, regardless of emotional expression. In the present experiment, we examined the effects of low (LSF, <15 cycles/image width) and high spatial frequency filtering (HSF, >25 cycles/image width) on brain processing of complex pictures depicting pleasant, unpleasant, and neutral scenes. Event-related potentials (ERP), percentage of recognized stimuli and response times were recorded in 19 healthy volunteers. Behavioral results indicated faster reaction times in response to unpleasant LSF than to unpleasant HSF pictures. Unpleasant LSF pictures and pleasant unfiltered pictures also elicited significant enhancements of P1 amplitudes at occipital electrodes as compared to neutral LSF and unfiltered pictures, respectively; whereas no significant effects of affective modulation were found for HSF pictures. Moreover, mean ERP amplitudes in the time between 200 and 500ms post-stimulus were significantly greater for affective (pleasant and unpleasant) than for neutral unfiltered pictures; whereas no significant affective modulation was found for HSF or LSF pictures at those latencies. The fact that affective LSF pictures elicited an enhancement of brain responses at early, but not at later latencies, suggests the existence of a rapid and preattentive neural mechanism for the processing of motivationally relevant stimuli, which could be driven by LSF cues. Our findings confirm thus previous results showing differences on brain processing of affective LSF and HSF faces, and extend these results to more complex and social affective pictures.
Resumo:
Resumo:
Urban centers all around the world are striving to re-orient themselves to promoting ideals of human engagement, flexibility, openness and synergy, that thoughtful architecture can provide. From a time when solitude in one’s own backyard was desirable, today’s outlook seeks more, to cater to the needs of diverse individuals and that of collaborators. This thesis is an investigation of the role of architecture in realizing how these ideals might be achieved, using Mixed Use Developments as the platform of space to test these designs ideas on. The author also investigates, identifies, and re-imagines how the idea of live-work excites and attracts users and occupants towards investing themselves in Mixed Used Developments (MUD’s), in urban cities. On the premise that MUDs historically began with an intention of urban revitalization, lying in the core of this spatial model, is the opportunity to investigate what makes mixing of uses an asset, especially in the eyes to today’s generation. Within the framework of reference to the current generation, i.e. the millennial population and alike, who have a lifestyle core that is urban-centric, the excitement for this topic is in the vision of MUD’s that will spatially cater to a variety in lifestyles, demographics, and functions, enabling its users to experience a vibrant 24/7 destination. Where cities are always in flux, the thesis will look to investigate the idea of opportunistic space, in a new MUD, that can also be perceived as an adaptive reuse of itself. The sustainability factor lies in the foresight of the transformative and responsive character of the different uses in the MUD at large, which provides the possibility to cater to a changing demand of building use over time. Delving into the architectural response, the thesis in the process explores, conflicts, tensions, and excitements, and the nature of relationships between different spatial layers of permanence vs. transformative, public vs. private, commercial vs. residential, in such an MUD. At a larger scale, investigations elude into the formal meaning and implications of the proposed type of MUD’s and the larger landscapes in which they are situated, with attempts to blur the fine line between architecture and urbanism. A unique character of MUD’s is the power it has to draw in people at the ground level and lead them into exciting spatial experiences. While the thesis stemmed from a purely objective and theoretical standpoint, the author believes that it is only when context is played into the design thinking process, that true architecture may start to flourish. The unique The significance of this thesis lies on the premise that the author believes that this re-imagined MUD has immense opportunity to amplify human engagement with designed space, and in the belief that it will better enable fostering sustainable communities and in the process, enhance people’s lives.
Resumo:
The bubble crab Dotilla fenestrata forms very dense populations on the sand flats of the eastern coast of Inhaca Island, Mozambique, making it an interesting biological model to examine spatial distribution patterns and test the relative efficiency of common sampling methods. Due to its apparent ecological importance within the sandy intertidal community, understanding the factors ruling the dynamics of Dotilla populations is also a key issue. In this study, different techniques of estimating crab density are described, and the trends of spatial distribution of the different population categories are shown. The studied populations are arranged in discrete patches located at the well-drained crests of nearly parallel mega sand ripples. For a given sample size, there was an obvious gain in precision by using a stratified random sampling technique, considering discrete patches as strata, compared to the simple random design. Density average and variance differed considerably among patches since juveniles and ovigerous females were found clumped, with higher densities at the lower and upper shore levels, respectively. Burrow counting was found to be an adequate method for large-scale sampling, although consistently underestimating actual crab density by nearly half. Regression analyses suggested that crabs smaller than 2.9 mm carapace width tend to be undetected in visual burrow counts. A visual survey of sampling plots over several patches of a large Dotilla population showed that crab density varied in an interesting oscillating pattern, apparently following the topography of the sand flat. Patches extending to the lower shore contained higher densities than those mostly covering the higher shore. Within-patch density variability also pointed to the same trend, but the density increment towards the lowest shore level varied greatly among the patches compared.
Resumo:
Settlement is a critical process in the life history of crabs, and thus affecting the abundance, distribution and structure of estuarine communities. The spatial pattern of settlement of megalopae of the shore crab Carcinus maenas along a longitudinal estuarine gradient (Mira River Estuary, Portugal) was examined, as well as its effects on the juvenile population. To measure megalopal settlement, four replicate collectors were deployed in six equally spaced stations along the estuarine axis. Juveniles were collected on the same locations with a quadrat randomly deployed on the substrate. To assess fine-scale megalopal settlement within a curved region of the estuary, replicate collectors were deployed on both margins along Moinho da Asneira curve. Megalopae settled differently along the six longitudinal points, with a tendency to attenuate their settlement upstream. Within the curved region, megalopae preferentially settled on the left margin collectors, probably due to the weaker velocity speeds felt on this margin. Concerning the overall juvenile density, there were significant differences among the stations distributed along the estuary, but they did no reflect a longitudinal dispersion attenuation pattern. Size-frequency distribution of the juvenile population showed that the average size is higher on the left margin. Recruits (carapace length between 1.0 mm and 3.4 mm) were more abundant on the upstream stations. Density of early juveniles (3.4 mm-6.5 mm) and juveniles (6.5 mm-10 mm) was more stable throughout the estuary axis than that of recruits. This distribution pattern may result from tidal excursion processes or mechanisms to avoid biotic interactions, such as predation and competition. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A variety of conservation policies now frame the management of fishing activity and so do also the spatial planning of different sectorial activities. These framework policies are additional to classical fishery management. There is a risk that the policies applying on the marine system are not coherent from a fisheries point of view. The spatial management of fishing activity at regional scale has the potential to meet multiple management objectives, on a habitat basis. Here we consider how to integrate multiple objectives of different policies into integrated ocean management scenarios. In the EU, European Directives and the CFP are now implementing the ecosystem approach to the management of human activity at sea. In this context, we further identify three research needs: • Develop Management Strategy Evaluation (MSE) for multiple-objective and multiple-sector spatial management schemes • Improve knowledge on and evaluation of functional habitats • Develop spatially-explicit end-to-end models with appropriate complexity for spatial MSE The contribution is based on the results of a workshop of the EraNet COFASP.
Resumo:
We review the use of neural field models for modelling the brain at the large scales necessary for interpreting EEG, fMRI, MEG and optical imaging data. Albeit a framework that is limited to coarse-grained or mean-field activity, neural field models provide a framework for unifying data from different imaging modalities. Starting with a description of neural mass models we build to spatially extended cortical models of layered two-dimensional sheets with long range axonal connections mediating synaptic interactions. Reformulations of the fundamental non-local mathematical model in terms of more familiar local differential (brain wave) equations are described. Techniques for the analysis of such models, including how to determine the onset of spatio-temporal pattern forming instabilities, are reviewed. Extensions of the basic formalism to treat refractoriness, adaptive feedback and inhomogeneous connectivity are described along with open challenges for the development of multi-scale models that can integrate macroscopic models at large spatial scales with models at the microscopic scale.
Resumo:
Forests have a prominent role in carbon storage and sequestration. Anthropogenic forcing has the potential to accelerate climate change and alter the distribution of forests. How forests redistribute spatially and temporally in response to climate change can alter their carbon sequestration potential. The driving question for this research was: How does plant migration from climate change impact vegetation distribution and carbon sequestration potential over continental scales? Large-scale simulation of the equilibrium response of vegetation and carbon from future climate change has shown relatively modest net gains in sequestration potential, but studies of the transient response has been limited to the sub-continent or landscape scale. The transient response depends on fine scale processes such as competition, disturbance, landscape characteristics, dispersal, and other factors, which makes it computational prohibitive at large domain sizes. To address this, this research used an advanced mechanistic model (Ecosystem Demography Model, ED) that is individually based, but pseudo-spatial, that reduces computational intensity while maintaining the fine scale processes that drive the transient response. First, the model was validated against remote sensing data for current plant functional type distribution in northern North America with a current climatology, and then a future climatology was used to predict the potential equilibrium redistribution of vegetation and carbon from future climate change. Next, to enable transient calculations, a method was developed to simulate the spatially explicit process of dispersal in pseudo-spatial modeling frameworks. Finally, the new dispersal sub-model was implemented in the mechanistic ecosystem model, and a model experimental design was designed and completed to estimate the transient response of vegetation and carbon to climate change. The potential equilibrium forest response to future climate change was found to be large, with large gross changes in distribution of plant functional types and comparatively smaller changes in net carbon sequestration potential for the region. However, the transient response was found to be on the order of centuries, and to depend strongly on disturbance rates and dispersal distances. Future work should explore the impact of species-specific disturbance and dispersal rates, landscape fragmentation, and other processes that influence migration rates and have been simulated at the sub-continent scale, but now at continental scales, and explore a range of alternative future climate scenarios as they continue to be developed.
Resumo:
Extreme conditions of coastal lagoons could directly modify the genetic patterns of species. The aim of this work was to investigate the influence of environmental conditions and small scale dispersal patterns on the phosphoglucose isomerase (PGI*) genetic variability of Cerastoderma glaucum from the Mar Menor coastal lagoon. For this purpose, 284 cockles were collected around the perimeter of the lagoon. Vertical polyacrylamide gel electrophoresis was used to scan for PGI* polymorphisms, giving a total of seven alleles. The spatial genetic distribution of the PGI* variability, which seems to be marked by the main circulation in the lagoon, discriminates four hydrological basins. In the central basin, a gradient of allelic composition reflects the circulation forced by the dominant winds and the main channel communicated to the open sea. This result is well supported by the salinity GAM model that defines this gradient. The other three basins are defined by the distribution of fine sand in a more complex model that tries to explain the isolation of the three sites localized inside these basins. The southern, western and northern basins show the lowest degree of interconnection and are considered the most confined areas of the Mar Menor lagoon. This situation agrees with the confinement theory for benthic assemblages in the lagoon. The greater degree of differentiation seen in the Isla del Ciervo population is probably due to recent human intervention on the nearby Marchamalo channel, which has been drained in recent years thus altering the influence of the Mediterranean Sea on the southern basin.
Resumo:
Holothurian populations are under pressure worldwide because of increasing demand for beche-de-mer, mainly for Asian consumption. Importations to this area from new temperate fishing grounds provide economic opportunities but also raise concerns regarding future over-exploitation. Studies on the habitat preferences and movements of sea cucumbers are important for the management of sea cucumber stocks and sizing of no-take zones, but information on the ecology and behavior of temperate sea cucumbers is scarce. This study describes the small-scale distribution and movement patterns of Holothuria arguinensis in the intertidal zone of the Ria Formosa national park (Portugal).Mark/recapture studieswere performed to record theirmovements over time on different habitats (sand and seagrass). H. arguinensis preferred seagrass habitats and did not show a size or life stage-related spatial segregation. Its density was 563 ind. ha−1 and mean movement speed was 10 m per day. Movement speed did not differ between habitats and the direction of movement was offshore during the day and shoreward during the night. Median home range size was 35 m2 and overlap among home ranges was 84%. H. arguinensis' high abundance, close association with seagrass and easy catchability in the intertidal zone, indicate the importance of including intertidal lagoons in future studies on temperate sea cucumber ecology since those systems might require different management strategies than fully submerged habitats.
Resumo:
In the presented thesis work, meshfree method with distance fields is applied to create a novel computational approach which enables inclusion of the realistic geometric models of the microstructure and liberates Finite Element Analysis(FEA) from thedependance on and limitations of meshing of fine microstructural feature such as splats and porosity.Manufacturing processes of ceramics produce materials with complex porosity microstructure.Geometry of pores, their size and location substantially affect macro scale physical properties of the material. Complex structure and geometry of the pores severely limit application of modern Finite Element Analysis methods because they require construction of spatial grids (meshes) that conform to the geometric shape of the structure. As a result, there are virtually no effective tools available for predicting overall mechanical and thermal properties of porous materials based on their microstructure. This thesis is a separate handling and controls of geometric and physical computational models that are seamlessly combined at solution run time. Using the proposedapproach we will determine the effective thermal conductivity tensor of real porous ceramic materials featuring both isotropic and anisotropic thermal properties. This work involved development and implementation of numerical algorithms, data structure, and software.