934 resultados para Fibre-cement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiscale micro-mechanics theory is extensively used for the prediction of the material response and damage analysis of unidirectional lamina using a representative volume element (RVE). Th is paper presents a RVE-based approach to characterize the materi al response of a multi-fibre cross-ply laminate considering the effect of matrix damage and fibre-matrix interfacial strength. The framework of the homogenization theory for periodic media has been used for the analysis of a 'multi-fibre multi-layer representative volume element' (M2 RVE) representing cross-ply laminate. The non-homogeneous stress-strain fields within the M2RVE are related to the average stresses and strains by using Gauss theorem and the Hill-Mandal strain energy equivalence principle. The interfacial bonding strength affects the in-plane shear stress-strain response significantl y. The material response predicted by M2 RVE is in good agreement with the experimental results available in the literature. The maximum difference between the shear stress predicted using M2 RVE and the experimental results is ~15% for the bonding strength of 30MPa at the strain value of 1.1%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a combined experimental and numerical study of hat-stiffened co-cured carbon-fibre composite panels loaded in uniaxial compression are presented. All panels consisted of two integrated stiffeners separated by an eight-ply thick skin bay of lay-up [*45/0190], . The effects of a 100 mm circular cutout in the skin was also investigated. The ultimate strength of all panels was governed by the load carrying capacity of the stiffeners. A change in the skin's buckling mode-shape was also observed for all panels loaded deep in the postbuckling region. The strains induced at the interior free-edge were not found to be critical. Non-linear finite element results correlated well with the prebuckling and initial postbuckling strain and displacements results obtained by experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study aim was to develop and apply an experimental technique to determine the biomechanical effect of polymethylmethacrylate (PMMA) and calcium phosphate (CaP) cement on the stiffness and strength of augmented vertebrae following traumatic fracture. Twelve burst type fractures were generated in porcine three-vertebra segments. The specimens were randomly split into two groups (n=6), imaged using microCT and tested under axial loading. The two groups of fractured specimens underwent a vertebroplasty procedure, one group was augmented with CaP cement designed and developed at Queen's University Belfast. The other group was augmented with PMMA cement (WHW Plastics, Hull, UK). The specimens were imaged and re-tested . An intact single vertebra specimen group (n=12) was also imaged and tested under axial loading. A significant decrease (p<0.01) was found between the stiffness of the fractured and intact groups, demonstrating that the fractures generated were sufficiently severe, to adversely affect mechanical behaviour. Significant increase (p<0.01) in failure load was found for the specimen group augmented with the PMMA cement compared to the pre-augmentation group, conversely, no significant increase (p<0.01) was found in the failure load of the specimens augmented with CaP cement, this is attributed to the significantly (p<0.05) lower volume of CaP cement that was successfully injected into the fracture, compared to the PMMA cement. The effect of the percentage of cement fracture fill, cement modulus on the specimen stiffness and ultimate failure load could be investigated further by using the methods developed within this study to test a more injectable CaP cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

Relevância:

20.00% 20.00%

Publicador: