967 resultados para Ferrite spinel. Cobalt. Combustion synthesis. Magnetic properties
Resumo:
New A2+Mo4+O3 oxides for A = Mn, Co and Zn crystallizing in a defect spinel structure have been prepared by hydrogen-reduction of the corresponding AMoO4 oxides. X-ray powder diffraction intensity analysis of the zinc compound indicates that the cation distribution is (Zn)t[Zn1/3Mo4/3□1/3]oO4. The defect spinels are metastable decomposing to a mixture of A2Mo3O8 and AO at high temperatures. Electrical and magnetic properties of the spinel phases are reported.
Resumo:
The Standard Model of particle physics consists of the quantum electrodynamics (QED) and the weak and strong nuclear interactions. The QED is the basis for molecular properties, and thus it defines much of the world we see. The weak nuclear interaction is responsible for decays of nuclei, among other things, and in principle, it should also effects at the molecular scale. The strong nuclear interaction is hidden in interactions inside nuclei. From the high-energy and atomic experiments it is known that the weak interaction does not conserve parity. Consequently, the weak interaction and specifically the exchange of the Z^0 boson between a nucleon and an electron induces small energy shifts of different sign for mirror image molecules. This in turn will make the other enantiomer of a molecule energetically favorable than the other and also shifts the spectral lines of the mirror image pair of molecules into different directions creating a split. Parity violation (PV) in molecules, however, has not been observed. The topic of this thesis is how the weak interaction affects certain molecular magnetic properties, namely certain parameters of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopies. The thesis consists of numerical estimates of NMR and ESR spectral parameters and investigations of the effects of different aspects of quantum chemical computations to them. PV contributions to the NMR shielding and spin-spin coupling constants are investigated from the computational point of view. All the aspects of quantum chemical electronic structure computations are found to be very important, which makes accurate computations challenging. Effects of molecular geometry are also investigated using a model system of polysilyene chains. PV contribution to the NMR shielding constant is found to saturate after the chain reaches a certain length, but the effects of local geometry can be large. Rigorous vibrational averaging is also performed for a relatively small and rigid molecule. Vibrational corrections to the PV contribution are found to be only a couple of per cents. PV contributions to the ESR g-tensor are also evaluated using a series of molecules. Unfortunately, all the estimates are below the experimental limits, but PV in some of the heavier molecules comes close to the present day experimental resolution.
Resumo:
We report the synthesis and properties of sphere-shaped microscale aggregates of bismuth telluride nanoplates. We obtain porous microspheres by reducing bismuth chloride and orthotelluric acid with hydrazine in the presence of thioglycolic acid-which serves as the shape-and size-directing agent-followed by room-temperature aging-which promotes nanoplate aggregation. Thin film assemblies of the nanoplate microspheres exhibit n-type behavior due to sulfur doping and a Seebeck coefficient higher than that reported for assemblies of chalcogenide nanostructures. Adaptation of our scalable approach to synthesize and hierarchically assemble nanostructures with controlled doping could be attractive for tailoring novel thermoelectric materials for applications in high-efficiency refrigeration and harvesting electricity from heat.
Resumo:
Nanocrystalline Zn1-xMnxS films (x=0.04, 0.08 and 0.12) were deposited on glass substrates at 400 K using a simple resistive thermal evaporation technique. All the deposited films were characterized by chemical, structural, morphological, optical and magnetic properties. Scanning electron microscopy and atomic force microscopy studies showed that all the films investigated were in nanocrystalline form with the grain size lying in the range 10–20 nm. All the films exhibited cubic structure and the lattice parameters increase linearly with composition. The absorption edge shifted from the higher-wavelength region to lower wavelengths with increase in Mn concentration. The magnetization increased sharply with increase of the Mn content up to x=0.08 and then decreased with further increase of the Mn content. Particularly, Zn0.92Mn0.08S concentration samples show a weak ferromagnetic nature, which might be the optimum concentration for optoelectronic and spintronic device applications.
Resumo:
Electrical and magnetic properties of several oxide systems of K2NiF4 structure have been compared to those of the corresponding perovskites. Members of the La1−xSr1+xCoO4 system are all semiconductors with a high activation energy for conduction unlike La1−xSrxCoO3 (x ≥ 0.3) which is metallic; the latter oxides are ferromagnetic. La0.5Sr1.5CoO4 shows a magnetization of 0.5 μB at 0 K (compared to 1.5 μB of La0.5Sr0.5CoO3), but the high-temperature susceptibilities of the two systems are comparable. In SrO · (La0.5Sr0.5MnO3)n, both magnetization and electrical conductivity increase with the increase in n approaching the value of the perovskite La0.5Sr0.5MnO3. LaSrMn0.5Ni0.5(Co0.5)O4 shows no evidence of long-range ferromagnetic ordering unlike the perovskite LaMn0.5Ni0.5(Co0.5)O3; high-temperature susceptibility behavior of these two insulating systems is, however, similar. LaSr1−xBaxNiO4 exhibits high electrical resistivity with the resistivity increasing proportionately with the magnetic susceptibility (note that LaNiO3 is a Pauli-paramagnetic metal). High-temperature susceptibility of LaSrNiO4 and LaNiO3 are comparable. Susceptibility measurements show no evidence for long-range ordering in LaSrFe1−xNixO4 unlike in LaFe1−xNixO3 (x ≤ 0.35) and the electrical resistivity of the former is considerably higher. Electrical resistivity of Sr2RuO4 is more than an order of magnitude higher than that of SrRuO3. Some generalizations of the properties of two- and three-dimensional oxide systems have emerged from these experimental observations.
Resumo:
The present work demonstrates a novel strategy to synthesize orthogonally bio-engineered magnetonanohybrids (MNPs) through the design of versatile, biocompatible linkers whose structure includes: (i) a robust anchor to bind with metal-oxide surfaces; (ii) tailored surface groups to act as spacers and (iii) a general method to implement orthogonal functionalizations of the substrate via ``click chemistry''. Ligands that possess the synthetic generality of features (i)-(iii) are categorized as ``universal ligands''. Herein, we report the synthesis of a novel, azido-terminated poly(ethylene glycol) (PEG) silane that can easily self-assemble on MNPs through hetero-condensation between surface hydroxyl groups and the silane end of the ligand, and simultaneously provide multiple clickable sites for high density, chemoselective bio-conjugation. To establish the universal-ligand-strategy, we clicked alkyl-functionalized folate onto the surface of PEGylated MNPs. By further integrating a near-infrared fluorescent (NIRF) marker (Alexa-Fluor 647) with MNPs, we demonstrated their folate-receptor mediated internalization inside cancer cells and subsequent translocation into lysosomes and mitochondria. Ex vivo NIRF imaging established that the azido-PEG-silane developed in course of the study can effectively reduce the sequestration of MNPs by macrophage organs (viz. liver and spleen). These folate-PEG-MNPs were not only stealth and noncytotoxic but their dual optical and magnetic properties aided in tracking their whereabouts through combined magnetic resonance and optical imaging. Together, these results provided a strong motivation for the future use of the ``universal ligand'' strategy towards development of ``smart'' nanohybrids for theragnostic applications.
Resumo:
Two heterometallic coordination polymers (CPs) have been prepared using (NiL)-L-II](2)Co-II (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) as nodes and dicyanamido spacers by varying the solvent for synthesis. Structural characterizations revealed that methanol assisted the formation of a two-dimensional (4,4) connected rhombic grid network of (NiL)(2)Co(NCNCN)2](infinity) (1a) whereas relatively less polar acetonitrile afforded a different superstructure {(NiL)(2)Co(NCNCN)(2)]center dot CH3CN}(infinity) (1b) with a two-dimensional (4,4) connected square grid network. The presence of acetonitrile molecules in the structure of 1b seems to change the spatial orientation of the terminal metalloligands NiL] from pseudo-eclipsed in 1a to staggered-like in 1b around the central Co(II). These structural changes in the nodes together with the conformationally flexible dicyanamido spacers, which are cis coordinated to the Co(II) in both trinuclear units, led to the differences in the final 2D network. Variable-temperature magnetic susceptibility measurements revealed that this supramolecular isomerism led to a drastic transition from spin-frustrated antiferromagnetism for 1a to a dominant ferromagnetic behaviour for 1b. The geometrical differences in Ni2Co coordination clusters (CCs) which are scalene triangular in 1a but nearly linear in 1b, are held responsible for the changes of the magnetic properties. The DFT calculations of exchange interactions between metal centres provide a clear evidence of the role played by the fundamental geometrical factors on the nature and magnitude of the magnetic coupling in these pseudo-polymorphic CPs.
Resumo:
We describe the synthesis, crystal structure, magnetic and electrochemical characterization of new rock salt-related oxides of formula, Li3M2RuO6 (M=Co, Ni). The M=Co oxide adopts the LiCoO2 (R-3m) structure, where sheets of LiO6 and (Co-2/Ru)O-6 octahedra are alternately stacked along the c-direction. The M=Ni oxide also adopts a similar layered structure related to Li2TiO3, where partial mixing of Li and Ni/Ru atoms lowers the symmetry to monoclinic (C2/c). Magnetic susceptibility measurements reveal that in Li3Co2RuO6, the oxidation states of transition metal ions are Co3+ (S=0), Co2+ (S=1/2) and Ru4+ (S=1), all of them in low-spin configuration and at 10 K, the material orders antiferromagnetically. Analogous Li3Ni2RuO6 presents a ferrimagnetic behavior with a Curie temperature of 100 K. The differences in the magnetic behavior have been explained in terms of differences in the crystal structure. Electrochemical studies correlate well with both magnetic properties and crystal structure. Li-transition metal intermixing may be at the origin of the more impeded oxidation of Li3Ni2RuO6 when compared to Li3CO2RuO6. Interestingly high first charge capacities (between ca. 160 and 180 mAh g(-1)) corresponding to ca. 2/3 of theoretical capacity are reached albeit, in both cases, capacity retention and cyclability are not satisfactory enough to consider these materials as alternatives to LiCoO2. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Solution combustion synthesis technique was adopted to synthesize V2O5, and Mo doped phases, The as-synthesized V2O5, has been reduced by a novel reduction technique to form VO2 typephase. The monophasic nature of the samples as revealed by XRD data and systematic shift in peak position indicated solid solubility up to 2 at % of Mo in VO2 lattice. The crystallite size was found to similar to 40 nm. Particle size measurement carried out using Transmission electron microscope ( TEM) agreed with XRD experiments. Scanning electron microscope revealed the morphology of the particles to be plate like and bimodal. Variation in the metal- insulator transition temperature as a function of doping was investigated by 4-probe electrical resistivity measurement on sintered ceramics.
Resumo:
We have investigated structural, dielectric, and magnetic properties of polycrystalline double perovskite Nd2NiMnO6 compound. The compound crystallizes in monoclinic P2(1)/n symmetry and is partially B-site disordered depending on the synthesis conditions. It undergoes second-order ferromagnetic transition at 192K and shows glassy behaviour at low temperature. The glassy phase is due to anti-site disorder within the homogeneous sample. Temperature and frequency dependent dielectric measurements reveal colossal values of dielectric constant and is best interpreted using Maxwell-Wagner interfacial polarization model. Impedance spectroscopy has been used to analyse the intrinsic dielectric response. This enabled us to differentiate the conduction process at the grain and grain boundaries. Arrhenius behaviour is favoured at the grain boundary, while variable range hopping mechanism is considered most suitable within the grain region. dc conductivity measurements corroborate variable range hopping conduction. (C) 2015 AIP Publishing LLC.
Resumo:
Among the multiple modulatory physical cues explored to regulate cellular processes, the potential of magneto-responsive substrates in magnetic field stimulated stem cell differentiation is still unperceived. In this regard, the present work demonstrates how an external magnetic field can be applied to direct stem cell differentiation towards osteogenic commitment. A new culture methodology involving periodic delivery of 100 mT static magnetic field (SMF) in combination with HA-Fe3O4 magnetic substrates possessing a varying degree of substrate magnetization was designed for the study. The results demonstrate that an appropriate combination of weakly ferromagnetic substrates and SMF exposure enhanced cell viability, DNA synthesis and caused an early switchover to osteogenic lineage as supported by Runx2 immunocytochemistry and ALP expression. However, the mRNA expression profile of early osteogenic markers (Runx2, ALP, Col IA) was comparable despite varying substrate magnetic properties (diamagnetic to ferromagnetic). On the contrary, a remarkable upregulation of late bone development markers (OCN and OPN) was explicitly detected on weak and strongly ferromagnetic substrates. Furthermore, SMF induced matrix mineralization with elevated calcium deposition on similar substrates, even in the absence of osteogenic supplements. More specifically, the role of SMF in increasing intracellular calcium levels and in inducing cell cycle arrest at G0/G1 phase was elucidated as the major molecular event triggering osteogenic differentiation. Taken together, the above results demonstrate the competence of magnetic stimuli in combination with magneto-responsive biomaterials as a potential strategy for stem cell based bone tissue engineering.
Resumo:
Co3O4 catalysts were prepared by combustion synthesis using different fuels glycine (G), ODH (O) and urea (U). Morphological changes of the materials were observed by using different fuels. The prepared catalysts were characterized by XRD, XPS, SEM, TEM, BET and DRIFTS analysis. All compounds showed 100% conversion of CO below 175C. The prepared catalysts exhibited very high stability and conversions did not decrease even after 50 h of continuous operation. The oxygen storage capacity (OSC) of materials was measured by H-2-TPR analysis. Co3O4-O is having high OSC among the synthesized catalysts. The activation energies of these catalysts were found to be in the range of 42.3-64.8 kJ mol(-1). With DRIFTS analysis, the surface carbonates, superoxide anions, adsorbed CO, O-2 species on the catalyst surface were found and this information was used to develop a detailed reaction pathway. A kinetic model was developed with the help of proposed mechanism and used to fit the data. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline intermetallic Co3Fe7 was produced on the surface of cobalt via surface mechanical attrition (SMA). Deformationinduced diffusion entailed the formation of a series of solid solutions. Phase transitions occurred depending on the atomic fraction of Fe in the surface solid solutions: from hexagonal close-packed (<4% Fe) to face-centered cubic (fcc) (4-11% Fe), and from fcc to body-centered cubic (>11% Fe). Nanoscale compositional probing suggested significantly higher Fe contents at grain boundaries and triple junctions than grain interiors. Short-circuit diffusion along grain boundaries and triple junctions dominate in the nanocrystalline intermetallic compound. Stacking faults contribute significantly to diffusion. Diffusion enhancement due to high-rate deformation in SMA was analyzed by regarding dislocations as solute-pumping channels, and the creation of excess vacancies. Non-equilibrium, atomic level alloying can then be ascribed to deformation-induced intermixing of constituent species. The formation mechanism of nanocrystalline intermetallic grains on the SMA surface can be thought of as a consequence of numerous nucleation events and limited growth. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
As nanopartículas de ferritas de manganês (MnFe2O4) tem sido de grande interesse por causa de suas notáveis propriedades magnéticas doces (baixa coercividade e moderada magnetização de saturação) acompanhada com boa estabilidade química e dureza mecânica. A formação de materiais híbridos/compósito estabiliza as nanopartículas magnéticas (NPMs) e gera funcionalidades aos materiais. Entretanto, não foi encontrada na literatura uma discussão sobre a síntese e as propriedades de polímeros polares reticulados à base de ácido metacrílico contendo ferritas de manganês na matriz polimérica. Assim, o objetivo desta Dissertação foi produzir partículas esféricas poliméricas reticuladas, com boas propriedades magnéticas, à base de ácido metacrílico, estireno, divinilbenzeno e ferritas de manganês. Neste trabalho, foram sintetizados compósitos de ferrita de manganês (MnFe2O4) dispersa em copolímeros de poli(ácido-metacrílico-co-estireno-co-divinilbenzeno), via polimerização em suspensão e em semi-suspensão. Foram variados os teores de ferrita (1% e 5%) e a concentração do agente de suspensão (0,2% e 5%). Além disso, foram testadas sínteses contendo a fase orgânica pré-polimerizada, e também a mistura da ferrita na fase orgânica (FO), antes da etapa da polimerização em suspensão. Os copolímeros foram analisados quanto as suas morfologias - microscopia óptica; propriedades magnéticas e distribuição das ferritas na matriz polimérica - VSM, SEM e EDS-X; propriedades térmicas TGA; concentração de metais presentes na matriz polimérica absorção atômica. As ferritas foram avaliadas quanto à cristalografia XRD. A matriz polimérica foi avaliada pela técnica de FTIR. As amostras que foram pré-polimerizadas e as que além de pré-polimerizadas foram misturadas as ferritas de manganês na FO, apresentaram as melhores propriedades magnéticas e uma incorporação maior da ferrita na matriz polimérica. Essas rotas sintéticas fizeram com que os copolímeros não apresentassem aglomeração, e também minimizou a presença de ferritas na superfície das microesferas. Em geral, todos os copolímeros obtidos apresentaram as características de materiais magneticamente doces além do superparamagnetismo. Foi constatado que o aumento da concentração do PVA e a diminuição da concentração da ferrita fazem com que os diâmetros das microesferas decresçam. Os resultados de TGA e DTG mostraram que ao misturar as ferritas na FO, a concentração de material magnético na matriz polimérica aumenta cerca de 10%. Entretanto, somente a amostra PM2550, pré-polimerizada e com as ferritas misturadas na FO (5% de ferrita e 0,2% de PVA), apresentou potencial aplicação. Isso porque as ferritas não ficaram expostas na superfície das microesferas, ou seja, o material magnético fica protegido de qualquer ação externa
Resumo:
Observation of room-temperature ferromagnetisin in Fe- and Ni-co-doped In2O3 samples (In0.9Fe0.1-xNix)(2)O-3 (0 <= x <= 0.1) prepared by citric acid sol-gel auto-igniting method is reported. All of the samples with intermediate x values are ferromagnetic at roomtemperature. The highest saturation magnetization (0.453 mu B/Fe + Ni ions) moment is reached in the sample with x = 0.04. The highest solubility of Fe and Ni ions in the In2O3 lattice is around 10 and 4 at%, respectively. The 10 at% Fe-doped sample is found to be weakly ferromagnetic, while the 10at% Ni-doped sample is paramagnetic. Extensive structure including Extended X-ray absorption fine structure (EXAFS), magnetic and magneto-transport including Hall effects studies on the samples indicate the observed ferromagnetism is intrinsic rather than from the secondary impurity phases. (c) 2007 Elsevier Ltd. All rights reserved.