999 resultados para Ferrimagnetic properties
Resumo:
High temperature load controlled fatigue, hot tensile and accelerated creep properties of thermal barrier coated (TBC) Superni C263 alloy used as a candidate material in combustor liner of aero engines are highlighted in this paper. Acoustic emission technique has been utilised to characterise the ductile-brittle transition teperature the bond coat. Results revealed that the DBTT (ductile to brittle transition temperature) of this bond coat is around 923 K, which is in close proximity to the value reported for CoCrAlY type of bond coat. Finite element technique, used for analysing the equivalent stresses in the bond coat well within the elastic limit, revealed the highest order of equivalent stress at 1073 K as the bond coat is ductile above 923 K. The endurance limit in fatigue and the life of TBC coated composite under accelerated creep conditions are substantially higher than those of the substrate material. Fractographic features at high stresses under fatigue showed intergranular cleavage whereas those at low stresses were transgranular and ductile in nature. Delamination of the bond coat and spallation of the TBC at high stresses during fatigue was evident. Unlike in the case of fatigue, the mode of fracture in the substrate at very high stresses was transgranular whereas that at low stresses was intergranular in creep.
Resumo:
An organically templated iron(II) sulfate of the composition [H3N(CH2)2NH2(CH2)2(NH3]4[FeII 9F18(SO4)6]â9H2O with a distorted Kagome structure has been synthesized under solvothermal conditions in the presence of diethylenetriamine. The distortion of the hexagonal bronze structure comes from the presence of two different types of connectivity between the FeF4O2 octahedra and the sulfate tetrahedra. This compound exhibits magnetic properties different from those of an Fe(II) compound with a perfect Kagome structure and is a canted antiferromagnet at low temperatures.
Resumo:
Crystal growth, electrical and magnetic properties are reported for mixed valence manganite Pr1-xPbxMnO3 (x = 0.2, 0.23, and 0.3). The crystals with x = 0.2 and 0.23 are ferromagnetic and insulating, whereas that with x = 0.3 is ferromagnetic below 200 K and shows an insulator-metal transition at 235 K. This composition shows a magnetoresistance of 90% in a field of 5 T. In the paramagnetic region, the temperature dependence of magnetic susceptibility of the crystals follows a Curie-Weiss behavior. The thermal evolution of magnetization in the ferromagnetic phase varies as T-3/2, in accordance with Bloch's law. The spin-stiffness constant D obtained from the Bloch constant is found to increase linearly with x. The magnetization does not reach complete saturation upto a field of 5 T. A possible contribution of the Pr spins to the total magnetic moment is discussed.
Resumo:
The deterioration of the mechanical properties of bone with age is related to several factors including the structure, organization and chemistry of the constituent phases; however, the relative contribution of each of these factors is not well understood. In this study, we have investigated the effect of chemistry (calcium deficiency) on the mechanical properties of single crystals of hydroxyapatite. Single crystals of stoichiometric crystals grown by the flux method and calcium-deficient platelet crystals grown using wet chemical methods were used as model systems. Using nanoindentation, we show that calcium deficiency leads to an 80% reduction in the hardness and elastic modulus and at least a 75% reduction in toughness in plate-shaped hydroxyapatite crystals. Measurement of local mechanical properties using nanoindentation and nanoscale chemistry through elemental mapping in a transmission electron microscope points to a direct correlation between the observed spatial variation in composition and the large scatter in the measured hardness and modulus values. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ultrasonic velocities at 10 MHz have been measured in two series of lithium, sodium, and potassium phosphomolybdate glasses with two fixed P2O5 concentrations. Elastic moduli, Poisson's ratio, and Debye temperature have been calculated. The composition dependence of most of the properties of lithium glasses exhibits a trend opposite to that of potassium glasses. Properties of sodium glasses lie between the other two alkali systems. Alkali oxide modification is suggested to be accompanied by ring reformation in lithium and sodium glasses. Ring size effects have been shown to account for all of the composition dependence.
Resumo:
The standard Gibbs energies of formation of RuO2 and OsO2 at high temperature have been determined with high precision, using a novel apparatus that incorporates a buffer electrode between the reference and working electrodes, The buffer electrode absorbs the electrochemical flux of oxygen through the solid electrolyte from the electrode with higher oxygen chemical potential to the electrode with lower oxygen potential, The buffer electrode prevents polarization of the measuring electrode and ensures accurate data, The standard Gibbs energies of formation (Delta(f)G degrees) of RuO2, in the temperature range of 900-1500 K, and OsO2, in the range of 900-1200 K, can be represented by the equations Delta(f)G degrees(RuO2)(J/mol) = -324 720 + 354.21T - 23.490T In T Delta(f)G degrees(OsO2)(J/mol) = -304 740 + 318.80T - 18.444T In T where the temperature T is given in Kelvin and the deviation of the measurement is +/- 80 J/mol, The high-temperature heat ;capacities of RuO2 and OsO2 are measured using differential scanning calorimetry. The information for both the low- and high-temperature heat rapacity of RuO2 is coupled with the Delta(f)G degrees data obtained in this study to evaluate the standard enthalpy of formation of RuO2 at 298.15 K (Delta(f)H degrees(298.15K)). The low-temperature heat capacity of OsO2 has not been measured: therefore, the standard enthalpy and entropy of formation of OsO2 at 298.15 K (Delta(f)H degrees(298.15K) and S degrees(298.15K), respectively) are derived simultaneously through an optimization procedure from the high-temperature heat capacity and the Gibbs energy of formation. Both Delta fH degrees(298.15K) and S degrees(298.15K) are treated as variables in the optimization routine, For RuO2, the standard enthalpy of formation at 298.15 K is Delta fH degrees(298.15K) (RuO2) -313.52 +/- 0.08 kJ/mol, and that for OsO2 is Delta(f)H degrees(298.15K) (OSO2) = -295.96 +/- 0.08 kJ/mol. The standard entropy of OsO2 at 298.15 K that has been obtained from the optimization is given as S degrees(298.15K) (OsO2) = 49.8 +/- 0.2 J (mol K)(-1).
Resumo:
Two segmented polyethylene oxides, SPEO-3 and SPEO-4, were prepared using a novel transetherification methodology. Their structures were confirmed by H-1 and C-13 NMR spectroscopy. The complexation of these SPEO's with alkali-metal ions in solution was investigated by C-13 NMR spectroscopy. The mole-fraction method was used to determine the complexation ratio of SPEO with LIClO4 at 25 degrees C, which showed that these formed 1:1 (polymer repeat unit/salt) complexes. The association constant, K, for the complex formation was calculated from the variation of the chemical shift values with salt concentration, using a standard nonlinear least-square fitting procedure. The maximum change in chemical shift (Delta delta) and the K values suggest that both SPEO-3 and SPEO-4 formed stronger complexes with lithium salts than with sodium salts. Unexpectedly, the K values were found to be different, when the variation of delta of different carbons was used in the fitting procedure. This suggests that several possible complexed species may be in equilibrium with the uncomplexed one. Structurally similar model compounds were also prepared and their complexation studies indicated that all of them also formed 1:1 complexes with Li salts. Interestingly, it was observed that the polymers gave higher K values suggesting the formation of more stable complexes in polymers when compared to the model analogues. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The comparative compressive properties of syntactic foam with and without the inclusion of E-glass fibers in the form of chopped strands are reported. The effort pointed to the fact that the fiber-free syntactic foam had a higher compressive strength than the fiber-bearing one whereas as regards the moduli values they did not differ much. The difference in strength is correlated with the amount of voids present in two foams. The scope of the work was further expanded by including scanning electron microscopy for examining: the surface features of samples prior to and after compression test.
Resumo:
Nanocrystalline Fe powders were synthesized by transmetallation reaction and embedded in silica to form Fe-SiO2 nanocomposite. Thermomagnetic study of the as-prepared Fe sample indicates the presence of Fe3O4 and Fe particles. Oxidation studies of Fe and Fe-SiO2 show an increased thermal stability of Fe-SiO2 nanocomposite over pure Fe. The Fe-SiO2 shows an enhanced oxidation temperature (i.e., 780 K) and a maximum saturation magnetization value of (135 emu/g) with 64 wt.% of Fe content in silica. Electrical and dielectric behaviour of the Fe-SiO2 nanocomposite has been investigated as a function of temperature and frequency. Low frequency ac conductivity and dielectric constants were found to be influenced by desorptions of chemisorbed moisture. High saturation magnetization, thermal stability, frequency-dependent conductivity and low power loss make Fe-silica a promising material for high frequency applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The coexisting phases in the pseudobinary system BaO-Y2O3 have been identified by equilibrating samples containing different amounts of component oxides at 1173, 1273 and 1373 K. Only two ternary oxides, BaY2O4 and Ba3Y4O9, have been found to be stable in the temperature range of investigation. Solid state galvanic cells: Pt, O2+BaO+BaF2double vertical barBaF2+2mol%Al2O3double vertical barBaF2+BaY2O4+Y2O3+O2, Pt and Pt, O2+BaO+BaF2double vertical barBaF2+2mol% Al2O3double vertical barBaF2+BaY2O4+Ba3Y4O9+O2, Pt have been employed for determining the Gibbs' energies of formation of BaY2O4 and Ba3Y4O9 from the component oxides in the range 850 to 1250 K. A composite solid electrolyte incorporating Al2O3-dispersed BaF2 was used in the cells. To prevent interaction between the Al2O3 powder and electrode materials, the solid electrolyte was coated with pure BaF2. The Gibbs' energies of formation of BaY2O4 and Ba3Y4O9 from component oxides are given by: Δf0 (BaY2O4, s)=−128,310+5.211T (±580) J mol−1, (850less-than-or-equals, slantTless-than-or-equals, slant1250 K) and ΔGfo(Ba3Y4O9, s)= −317,490 −24.704T (±1100) J mol−1, (850less-than-or-equals, slantTless-than-or-equals, slant1250 K).
Resumo:
The copper(II) complex [Cu(salgly) (bpy)] . 4H(2)O (1), where salgly is a tridentate glycinatosalicylaldimine Schiffbase Ligand, is prepared and structurally characterized. The complex is found to be catalytically active in the oxidation of ascorbic acid by dioxygen and the process is also effective in the presence of benzylamine giving benzaldehyde as a product, thus modeling the activity of the Cu-B site of dopamine beta-hydroxylase. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
An extracellular β-glucosidase (EC 3.2.1.21) has been purified to homogeneity from the culture filtrate of a thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce, using duplicating paper as the carbon source. The enzyme was purified 82-fold with a 43% yield by ion-exchange chromatography and gel filtration. The molecular weight of the protein was estimated to be 135,000 by gel filtration and 110,000 by electrophoresis. The sedimentation coefficient was 10.5 S. It was an acidic protein containing high amounts of acidic amino acid residues. It was poor in sulphur-containing amino acids. It also contained 9% carbohydrate. The enzyme activity was optimum at pH 4.5 and at 60°C. The enzyme was stable in the pH range 6–9 for 24 h at 25°C. The enzyme had similar affinities towards cellobiose and p-nitrophenyl-β-d-glucoside with Km values of 0.44 mM and 0.50 mM, respectively. The enzyme was capable of hydrolysing larchwood xylan, xylobiose and p-nitrophenyl-β-d-xyloside, though to a lesser extent. The enzyme was specific for the β-configuration and glucose moiety in the substrate.
Resumo:
Elastic properties of potassium and lead phosphotungstate glasses have been investigated using ultrasonic velocity measurements. The composition dependence of elastic moduli in WO3-K2O-P2O5 glasses suggests that at low alkali oxide concentrations the atomic ring size increases by network modification, which results in the decrease of elastic moduli. In the highly modified regime, due to the presence of coulombic interaction, the rate of decrease of elastic moduli is reduced. In the WO3-PbO-P2O5 glasses the behaviour of elastic moduli suggests that PbO behaves both as a network former and network modifier. The incorporation of PbO into the network is quantitatively determined by the concentration of P2O5 in the system. The results are consistent with the structural model proposed earlier, based on characterization studies.
Resumo:
Glasses obtained from quenching melts of superconducting bismuth cuprates of the formula Bi2(Ca,Sr)n+1CunO2n+4 with n=1 and 3 exhibit novel dielectric properties. They possess relatively high dielectric constants as well as high electrical conductivity. The novel dielectric properties of these cuprate glasses are likely to be of electronic origin. They exhibit a weak microwave absorption due to the presence of microcrystallites.
Resumo:
An investigation has been carried out on the proteinase inhibitors of grain sorghum (Sorghum bicolor (L.) Moench). One of the inhibitors has been isolated in a pure form and characterized. The proteinase inhibitor was extracted from the acetone-defatted sorghum meal and purified by selective thermal denaturation, ammonium sulfate fractionation, Sephadex gel filtration and DEAE-cellulose chromatography (DEAE-preparation II). This preparation was demonstrated to be a mixture of three inhibitor components by polyacrylamide disc gel electrophoresis. Further resolution of this mixture into Inhibitors I to III was achieved by QAE-Sephadex chromatography. Sorghum Inhibitor III was homogeneous by the criteria of disc gel electrophoresis and has been more fully characterized. A molecular weight of 25,000 was obtained for Inhibitor III by gel filtration and was in agreement with the value calculated from the amino acid composition of the inhibitor. The N-terminal amino acid residue of Inhibitor III, a single chain protein, was isoleucine. Sorghum proteinase inhibitors inhibit specifically the serine proteinases and are inactive towards the other classes of proteinases. Inhibitor III is primarily a chymotrypsin inhibitor, whereas Inhibitors I and II inhibit both trypsin and chymotrypsin.