920 resultados para Faisceau occipito-frontal (FOF)
Resumo:
Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.
Resumo:
Anatomically segregated systems linking the frontal cortex and the striatum are involved in various aspects of cognitive, affective, and motor processing. In this study, we examined the effects of combined unilateral lesions of the medial prefrontal cortex (mPFC) and the core subregion of the nucleus accumbens (AcbC) in opposite hemispheres (disconnection) on a continuous performance, visual attention test [five-choice serial reaction-time task (5CSRTT)]. The disconnection lesion produced a set of specific changes in performance of the 5CSRTT, resembling changes that followed bilateral AcbC lesions while, in addition, comprising a subset of the behavioral changes after bilateral mPFC lesions previously reported using the same task. Specifically, both mPFC/AcbC disconnection and bilateral AcbC lesions markedly affected aspects of response control related to affective feedback, as indexed by perseverative responding in the 5CSRTT. These effects were comparable, although not identical, to those in animals with either bilateral AcbC or mPFC/AcbC disconnection lesions. The mPFC/AcbC disconnection resulted in a behavioral profile largely distinct from that produced by disconnection of a similar circuit described previously, between the mPFC and the dorsomedial striatum, which were shown to form a functional network underlying aspects of visual attention and attention to action. This distinction provides an insight into the functional specialization of corticostriatal circuits in similar behavioral contexts.
Resumo:
The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64–66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease > maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease > maintain) and monotonic changes in EDA (increase > maintain > decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.
Resumo:
Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.
Resumo:
Mesoscale convective systems (MCSs) are relatively rare events in the UK but, when they do occur, can be associated with weather that is considered extreme with respect to climatology (as indicated by the number of such events that have been analysed as case studies). These case studies usually associate UK MCSs with a synoptic environment known as the Spanish plume. Here a previously published 17 year climatology of UK MCS events is extended to the present day (from 1998 to 2008) and these events classified according to the synoptic environment in which they form. Three distinct synoptic environments have been identified, here termed the classical Spanish plume, modified Spanish plume, and European easterly plume. Detailed case studies of the two latter, newly defined, environments are presented. Composites produced for each environment further reveal the differences between them. The classical Spanish plume is associated with an eastward propagating baroclinic cyclone that evolves according to idealised life cycle 1. Conditional instability is released from a warm moist plume of air advected northeastwards from Iberia that is capped by warmer, but very dry air, from the Spanish plateau. The modified Spanish plume is associated with a slowly moving mature frontal system associated with a forward tilting trough (and possibly cut-off low) at 500 hPa that evolves according to idealised life cycle 2. As in the classical Spanish plume, conditional instability is released from a warm plume of air advected northwards from Iberia. The less frequent European easterly plume is associated with an omega block centred over Scandinavia at upper levels. Conditional instability is released from a warm plume of air advected westwards across northern continental Europe. Unlike the Spanish plume environments, the European easterly plume is not a warm sector phenomena associated with a baroclinic cyclone. However, in all environments the organisation of convection is associated with the interaction of an upper-level disturbance with a low-level region of warm advection.
Resumo:
BACKGROUND: Resting-state functional magnetic resonance imaging (fMRI) enables investigation of the intrinsic functional organization of the brain. Fractal parameters such as the Hurst exponent, H, describe the complexity of endogenous low-frequency fMRI time series on a continuum from random (H = .5) to ordered (H = 1). Shifts in fractal scaling of physiological time series have been associated with neurological and cardiac conditions. METHODS: Resting-state fMRI time series were recorded in 30 male adults with an autism spectrum condition (ASC) and 33 age- and IQ-matched male volunteers. The Hurst exponent was estimated in the wavelet domain and between-group differences were investigated at global and voxel level and in regions known to be involved in autism. RESULTS: Complex fractal scaling of fMRI time series was found in both groups but globally there was a significant shift to randomness in the ASC (mean H = .758, SD = .045) compared with neurotypical volunteers (mean H = .788, SD = .047). Between-group differences in H, which was always reduced in the ASC group, were seen in most regions previously reported to be involved in autism, including cortical midline structures, medial temporal structures, lateral temporal and parietal structures, insula, amygdala, basal ganglia, thalamus, and inferior frontal gyrus. Severity of autistic symptoms was negatively correlated with H in retrosplenial and right anterior insular cortex. CONCLUSIONS: Autism is associated with a small but significant shift to randomness of endogenous brain oscillations. Complexity measures may provide physiological indicators for autism as they have done for other medical conditions.
Resumo:
Objective: This study was designed to examine the existence of deficits in mentalizing or theory of mind (ToM) in children with traumatic brain injury (TBI). Research design: ToM functioning was assessed in 12 children aged 6-12 years with TBI and documented frontal lobe damage and compared to 12 controls matched for age, sex and verbal ability. Brief measures of attention and memory were also included. Main outcome and results: The TBI group was significantly impaired relative to controls on the advanced ToM measure and a measure of basic emotion recognition. No difference was found in a basic measure of ToM. Conclusion: Traumatic brain damage in childhood may disrupt the developmental acquisition of emotion recognition and advanced ToM skills. The clinical and theoretical importance of these findings is discussed and the implications for the assessment and treatment of children who have experienced TBI are outlined.
Resumo:
Parkinson's disease patients may have difficulty decoding prosodic emotion cues. These data suggest that the basal ganglia are involved, but may reflect dorsolateral prefrontal cortex dysfunction. An auditory emotional n-back task and cognitive n-back task were administered to 33 patients and 33 older adult controls, as were an auditory emotional Stroop task and cognitive Stroop task. No deficit was observed on the emotion decoding tasks; this did not alter with increased frontal lobe load. However, on the cognitive tasks, patients performed worse than older adult controls, suggesting that cognitive deficits may be more prominent. The impact of frontal lobe dysfunction on prosodic emotion cue decoding may only become apparent once frontal lobe pathology rises above a threshold.
Resumo:
Decoding emotional prosody is crucial for successful social interactions, and continuous monitoring of emotional intent via prosody requires working memory. It has been proposed by Ross and others that emotional prosody cognitions in the right hemisphere are organized in an analogous fashion to propositional language functions in the left hemisphere. This study aimed to test the applicability of this model in the context of prefrontal cortex working memory functions. BOLD response data were therefore collected during performance of two emotional working memory tasks by participants undergoing fMRI. In the prosody task, participants identified the emotion conveyed in pre-recorded sentences, and working memory load was manipulated in the style of an N-back task. In the matched lexico-semantic task, participants identified the emotion conveyed by sentence content. Block-design neuroimaging data were analyzed parametrically with SPM5. At first, working memory for emotional prosody appeared to be right-lateralized in the PFC, however, further analyses revealed that it shared much bilateral prefrontal functional neuroanatomy with working memory for lexico-semantic emotion. Supplementary separate analyses of males and females suggested that these language functions were less bilateral in females, but their inclusion did not alter the direction of laterality. It is concluded that Ross et al.'s model is not applicable to prefrontal cortex working memory functions, that evidence that working memory cannot be subdivided in prefrontal cortex according to material type is increased, and that incidental working memory demands may explain the frontal lobe involvement in emotional prosody comprehension as revealed by neuroimaging studies. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Emotion processing deficits can cause catastrophic damage to a person's ability to interact socially. While it is known that older adults have difficulty identifying facial emotions, it is still not clear whether this difficulty extends to identification of the emotion conveyed by prosody. This study investigated whether the ability of older adults to decode emotional prosody falls below that of young adults after controlling for loss of hearing sensitivity and key features of cognitive ageing. Apart from frontal lobe load, only verbal IQ was associated with the age-related reduction in performance displayed by older participants, but a notable deficit existed after controlling for its effects. It is concluded that older adults may indeed have difficulty deducing the emotion conveyed by prosody, and that while this difficulty can be exaggerated by some aspects of cognitive ageing, it is primary in origin.
Resumo:
We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.
Resumo:
When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from "biased competition", with the top-down bias being generated by parietal-frontal interactions and the competition taking place between stimulus codes in temporal cortex.
Resumo:
Individuals with fragile X syndrome (FXS) commonly display characteristics of social anxiety, including gaze aversion, increased time to initiate social interaction, and difficulty forming meaningful peer relationships. While neural correlates of face processing, an important component of social interaction, are altered in FXS, studies have not examined whether social anxiety in this population is related to higher cognitive processes, such as memory. This study aimed to determine whether the neural circuitry involved in face encoding was disrupted in individuals with FXS, and whether brain activity during face encoding was related to levels of social anxiety. A group of 11 individuals with FXS (5 M) and 11 age-and gender-matched control participants underwent fMRI scanning while performing a face encoding task with onlineeye-tracking. Results indicate that compared to the control group, individuals with FXS exhibited decreased activation of prefrontal regions associated with complex social cognition, including the medial and superior frontal cortex, during successful face encoding. Further, the FXS and control groups showed significantly different relationships between measures of social anxiety (including gaze-fixation) and brain activity during face encoding. These data indicate that social anxiety in FXS may be related to the inability to successfully recruit higher level social cognition regions during the initial phases of memory formation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Substituted amphetamines such as p-chloroamphetamine and the abused drug methylenedioxymethamphetamine cause selective destruction of serotonin axons in rats, by unknown mechanisms. Since some serotonin neurones also express neuronal nitric oxide synthase, which has been implicated in neurotoxicity, the present study was undertaken to determine whether nitric oxide synthase expressing serotonin neurones are selectively vulnerable to methylenedioxymethamphetamine or p-chloroamphetamine. Using double-labeling immunocytochemistry and double in situ hybridization for nitric oxide synthase and the serotonin transporter, it was confirmed that about two thirds of serotonergic cell bodies in the dorsal raphe nucleus expressed nitric oxide synthase, however few if any serotonin transporter immunoreactive axons in striatum expressed nitric oxide synthase at detectable levels. Methylenedioxymethamphetamine (30 mg/kg) or p-chloroamphetamine (2 x 10 mg/kg) was administered to Sprague-Dawley rats, and 7 days after drug administration there were modest decreases in the levels of serotonin transporter protein in frontal cortex, and striatum using Western blotting, even though axonal loss could be clearly seen by immunostaining. p-Chloroamphetamine or methylenedioxymethamphetamine administration did not alter the level of nitric oxide synthase in striatum or frontal cortex, determined by Western blotting. Analysis of serotonin neuronal cell bodies 7 days after p-chloroamphetamine treatment, revealed a net down-regulation of serotonin transporter mRNA levels, and a profound change in expression of nitric oxide synthase, with 33% of serotonin transporter mRNA positive cells containing nitric oxide synthase mRNA, compared with 65% in control animals. Altogether these results support the hypothesis that serotonin neurones which express nitric oxide synthase are most vulnerable to substituted amphetamine toxicity, supporting the concept that the selective vulnerability of serotonin neurones has a molecular basis.
Resumo:
A numerical mesoscale model is used to make a high-resolution simulation of the marine boundary layer in the Persian Gulf, during conditions of offshore flow from Saudi Arabia. A marine internal boundary layer (MIBL) and a sea-breeze circulation (SBC) are found to co-exist. The sea breeze develops in the mid-afternoon, at which time its front is displaced several tens of kilometres offshore. Between the coast and the sea-breeze system, the MIBL that occurs is consistent with a picture described in the existing literature. However, the MIBL is perturbed by the SBC, the boundary layer deepening significantly seaward of the sea-breeze front. Our analysis suggests that this strong, localized deepening is not a direct consequence of frontal uplift, but rather that the immediate cause is the retardation of the prevailing, low-level offshore wind by the SBC. The simulated boundary-layer development can be accounted for by using a simple 1D Lagrangian model of growth driven by the surface heat flux. This model is obtained as a straightforward modification of an established MIBL analytic growth model.