857 resultados para Facial Object Based Method
Resumo:
Stochastic model updating must be considered for quantifying uncertainties inherently existing in real-world engineering structures. By this means the statistical properties,instead of deterministic values, of structural parameters can be sought indicating the parameter variability. However, the implementation of stochastic model updating is much more complicated than that of deterministic methods particularly in the aspects of theoretical complexity and low computational efficiency. This study attempts to propose a simple and cost-efficient method by decomposing a stochastic updating process into a series of deterministic ones with the aid of response surface models and Monte Carlo simulation. The response surface models are used as surrogates for original FE models in the interest of programming simplification, fast response computation and easy inverse optimization. Monte Carlo simulation is adopted for generating samples from the assumed or measured probability distributions of responses. Each sample corresponds to an individual deterministic inverse process predicting the deterministic values of parameters. Then the parameter means and variances can be statistically estimated based on all the parameter predictions by running all the samples. Meanwhile, the analysis of variance approach is employed for the evaluation of parameter variability significance. The proposed method has been demonstrated firstly on a numerical beam and then a set of nominally identical steel plates tested in the laboratory. It is found that compared with the existing stochastic model updating methods, the proposed method presents similar accuracy while its primary merits consist in its simple implementation and cost efficiency in response computation and inverse optimization.
Resumo:
Los métodos de detección rápida de microorganismos se están convirtiendo en una herramienta esencial para el control de calidad en el área de la biotecnología, como es el caso de las industrias de alimentos y productos farmacéuticos y bioquímicos. En este escenario, el objetivo de esta tesis doctoral es desarrollar una técnica de inspección rápida de microoganismos basada en ultrasonidos. La hipótesis propuesta es que la combinación de un dispositivo ultrasónico de medida y un medio líquido diseñado específicamente para producir y atrapar burbujas, pueden constituir la base de un método sensible y rápido de detección de contaminaciones microbianas. La técnica presentada es efectiva para bacterias catalasa-positivas y se basa en la hidrólisis del peróxido de hidrógeno inducida por la catalasa. El resultado de esta reacción es un medio con una creciente concentración de burbujas. Tal medio ha sido estudiado y modelado desde el punto de vista de la propagación ultrasónica. Las propiedades deducidas a partir del análisis cinemático de la enzima se han utilizado para evaluar el método como técnica de inspección microbiana. En esta tesis, se han investigado aspectos teóricos y experimentales de la hidrólisis del peróxido de hidrógeno. Ello ha permitido describir cuantitativamente y comprender el fenómeno de la detección de microorganismos catalasa-positivos mediante la medida de parámetros ultrasónicos. Más concretamente, los experimentos realizados muestran cómo el oxígeno que aparece en forma de burbujas queda atrapado mediante el uso de un gel sobre base de agar. Este gel fue diseñado y preparado especialmente para esta aplicación. A lo largo del proceso de hidrólisis del peróxido de hidrógeno, se midió la atenuación de la onda y el “backscattering” producidos por las burbujas, utilizando una técnica de pulso-eco. Ha sido posible detectar una actividad de la catalasa de hasta 0.001 unidades/ml. Por otra parte, este estudio muestra que por medio del método propuesto, se puede lograr una detección microbiana para concentraciones de 105 células/ml en un periodo de tiempo corto, del orden de unos pocos minutos. Estos resultados suponen una mejora significativa de tres órdenes de magnitud en comparación con otros métodos de detección por ultrasonidos. Además, la sensibilidad es competitiva con modernos y rápidos métodos microbiológicos como la detección de ATP por bioluminiscencia. Pero sobre todo, este trabajo muestra una metodología para el desarrollo de nuevas técnicas de detección rápida de bacterias basadas en ultrasonidos. ABSTRACT In an industrial scenario where rapid microbiological methods are becoming essential tools for quality control in the biotechnological area such as food, pharmaceutical and biochemical; the objective of the work presented in this doctoral thesis is to develop a rapid microorganism inspection technique based on ultrasounds. It is proposed that the combination of an ultrasonic measuring device with a specially designed liquid medium, able to produce and trap bubbles could constitute the basis of a sensitive and rapid detection method for microbial contaminations. The proposed technique is effective on catalase positive microorganisms. Well-known catalase induced hydrogen peroxide hydrolysis is the fundamental of the developed method. The physical consequence of the catalase induced hydrogen peroxide hydrolysis is an increasingly bubbly liquid medium. Such medium has been studied and modeled from the point of view of ultrasonic propagation. Properties deduced from enzyme kinematics analysis have been extrapolated to investigate the method as a microbial inspection technique. In this thesis, theoretical and experimental aspects of the hydrogen peroxide hydrolysis were analyzed in order to quantitatively describe and understand the catalase positive microorganism detection by means of ultrasonic measurements. More concretely, experiments performed show how the produced oxygen in form of bubbles is trapped using the new gel medium based on agar, which was specially designed for this application. Ultrasonic attenuation and backscattering is measured in this medium using a pulse-echo technique along the hydrogen peroxide hydrolysis process. Catalase enzymatic activity was detected down to 0.001 units/ml. Moreover, this study shows that by means of the proposed method, microbial detection can be achieved down to 105 cells/ml in a short time period of the order of few minutes. These results suppose a significant improvement of three orders of magnitude compared to other ultrasonic detection methods for microorganisms. In addition, the sensitivity reached is competitive with modern rapid microbiological methods such as ATP detection by bioluminescence. But above all, this work points out a way to proceed for developing new rapid microbial detection techniques based on ultrasound.
Resumo:
Las pruebas de software (Testing) son en la actualidad la técnica más utilizada para la validación y la evaluación de la calidad de un programa. El testing está integrado en todas las metodologías prácticas de desarrollo de software y juega un papel crucial en el éxito de cualquier proyecto de software. Desde las unidades de código más pequeñas a los componentes más complejos, su integración en un sistema de software y su despliegue a producción, todas las piezas de un producto de software deben ser probadas a fondo antes de que el producto de software pueda ser liberado a un entorno de producción. La mayor limitación del testing de software es que continúa siendo un conjunto de tareas manuales, representando una buena parte del coste total de desarrollo. En este escenario, la automatización resulta fundamental para aliviar estos altos costes. La generación automática de casos de pruebas (TCG, del inglés test case generation) es el proceso de generar automáticamente casos de prueba que logren un alto recubrimiento del programa. Entre la gran variedad de enfoques hacia la TCG, esta tesis se centra en un enfoque estructural de caja blanca, y más concretamente en una de las técnicas más utilizadas actualmente, la ejecución simbólica. En ejecución simbólica, el programa bajo pruebas es ejecutado con expresiones simbólicas como argumentos de entrada en lugar de valores concretos. Esta tesis se basa en un marco general para la generación automática de casos de prueba dirigido a programas imperativos orientados a objetos (Java, por ejemplo) y basado en programación lógica con restricciones (CLP, del inglés constraint logic programming). En este marco general, el programa imperativo bajo pruebas es primeramente traducido a un programa CLP equivalente, y luego dicho programa CLP es ejecutado simbólicamente utilizando los mecanismos de evaluación estándar de CLP, extendidos con operaciones especiales para el tratamiento de estructuras de datos dinámicas. Mejorar la escalabilidad y la eficiencia de la ejecución simbólica constituye un reto muy importante. Es bien sabido que la ejecución simbólica resulta impracticable debido al gran número de caminos de ejecución que deben ser explorados y a tamaño de las restricciones que se deben manipular. Además, la generación de casos de prueba mediante ejecución simbólica tiende a producir un número innecesariamente grande de casos de prueba cuando es aplicada a programas de tamaño medio o grande. Las contribuciones de esta tesis pueden ser resumidas como sigue. (1) Se desarrolla un enfoque composicional basado en CLP para la generación de casos de prueba, el cual busca aliviar el problema de la explosión de caminos interprocedimiento analizando de forma separada cada componente (p.ej. método) del programa bajo pruebas, almacenando los resultados y reutilizándolos incrementalmente hasta obtener resultados para el programa completo. También se ha desarrollado un enfoque composicional basado en especialización de programas (evaluación parcial) para la herramienta de ejecución simbólica Symbolic PathFinder (SPF). (2) Se propone una metodología para usar información del consumo de recursos del programa bajo pruebas para guiar la ejecución simbólica hacia aquellas partes del programa que satisfacen una determinada política de recursos, evitando la exploración de aquellas partes del programa que violan dicha política. (3) Se propone una metodología genérica para guiar la ejecución simbólica hacia las partes más interesantes del programa, la cual utiliza abstracciones como generadores de trazas para guiar la ejecución de acuerdo a criterios de selección estructurales. (4) Se propone un nuevo resolutor de restricciones, el cual maneja eficientemente restricciones sobre el uso de la memoria dinámica global (heap) durante ejecución simbólica, el cual mejora considerablemente el rendimiento de la técnica estándar utilizada para este propósito, la \lazy initialization". (5) Todas las técnicas propuestas han sido implementadas en el sistema PET (el enfoque composicional ha sido también implementado en la herramienta SPF). Mediante evaluación experimental se ha confirmado que todas ellas mejoran considerablemente la escalabilidad y eficiencia de la ejecución simbólica y la generación de casos de prueba. ABSTRACT Testing is nowadays the most used technique to validate software and assess its quality. It is integrated into all practical software development methodologies and plays a crucial role towards the success of any software project. From the smallest units of code to the most complex components and their integration into a software system and later deployment; all pieces of a software product must be tested thoroughly before a software product can be released. The main limitation of software testing is that it remains a mostly manual task, representing a large fraction of the total development cost. In this scenario, test automation is paramount to alleviate such high costs. Test case generation (TCG) is the process of automatically generating test inputs that achieve high coverage of the system under test. Among a wide variety of approaches to TCG, this thesis focuses on structural (white-box) TCG, where one of the most successful enabling techniques is symbolic execution. In symbolic execution, the program under test is executed with its input arguments being symbolic expressions rather than concrete values. This thesis relies on a previously developed constraint-based TCG framework for imperative object-oriented programs (e.g., Java), in which the imperative program under test is first translated into an equivalent constraint logic program, and then such translated program is symbolically executed by relying on standard evaluation mechanisms of Constraint Logic Programming (CLP), extended with special treatment for dynamically allocated data structures. Improving the scalability and efficiency of symbolic execution constitutes a major challenge. It is well known that symbolic execution quickly becomes impractical due to the large number of paths that must be explored and the size of the constraints that must be handled. Moreover, symbolic execution-based TCG tends to produce an unnecessarily large number of test cases when applied to medium or large programs. The contributions of this dissertation can be summarized as follows. (1) A compositional approach to CLP-based TCG is developed which overcomes the inter-procedural path explosion by separately analyzing each component (method) in a program under test, stowing the results as method summaries and incrementally reusing them to obtain whole-program results. A similar compositional strategy that relies on program specialization is also developed for the state-of-the-art symbolic execution tool Symbolic PathFinder (SPF). (2) Resource-driven TCG is proposed as a methodology to use resource consumption information to drive symbolic execution towards those parts of the program under test that comply with a user-provided resource policy, avoiding the exploration of those parts of the program that violate such policy. (3) A generic methodology to guide symbolic execution towards the most interesting parts of a program is proposed, which uses abstractions as oracles to steer symbolic execution through those parts of the program under test that interest the programmer/tester most. (4) A new heap-constraint solver is proposed, which efficiently handles heap-related constraints and aliasing of references during symbolic execution and greatly outperforms the state-of-the-art standard technique known as lazy initialization. (5) All techniques above have been implemented in the PET system (and some of them in the SPF tool). Experimental evaluation has confirmed that they considerably help towards a more scalable and efficient symbolic execution and TCG.
Resumo:
In living bodies, the correct perceptual representation of size constancy requires that an object's size appear the same when it changes its location with respect to the observer. At the same time, it is necessary that objects at different locations appear to be the same size if they are. In order to do that, the perceptual system must recover from the stimuli impinging on the individual, from the light falling on the retina, a representation of the relative sizes of objects in the environment. Moreover, at the same time, image perception is related to another type of phenomena. It corresponds to the well known perceptual illusions. To analyze this facts, we propose a system based on a particular arrays of receptive points composed by optical fibers and dummy fibers. The structure is based on the first layers of the mammalians primary visual cortex. At that part of the brain, the neurons located at certain columns, respond to particular directions. This orientation changes in a systematic way as one moves across the cortical surface. In our case, the signals from the above-mentioned array are analyzed and information concerning orientation and size of a particular line is obtained. With this system, the Muelle-Lyer illusion has been studied and some rules to interpret why equal length objects give rise to different interpretations are presented.
Resumo:
Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.
Resumo:
This paper presents a novel method for the calibration of a parallel robot, which allows a more accurate configuration instead of a configuration based on nominal parameters. It is used, as the main sensor with one camera installed in the robot hand that determines the relative position of the robot with respect to a spherical object fixed in the working area of the robot. The positions of the end effector are related to the incremental positions of resolvers of the robot motors. A kinematic model of the robot is used to find a new group of parameters, which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and thereby improve spatial measurements. Finally, several working tests, static and tracking tests are executed in order to verify how the robotic system behaviour improves by using calibrated parameters against nominal parameters. In order to emphasize that, this proposed new method uses neither external nor expensive sensor. That is why new robots are useful in teaching and research activities.
Resumo:
Among those damage identification methods, the Wavelet Packet Energy Curvature Difference (WPECD) Method is an effective one. However, most of the existing methods rely on numerical simulation and are unverified via experiment, and very few of them have been applied to practice. In this paper, the validity of WPECD in structural damage identification is verified by a numerical example. A damage simulation experiment is taken on a real replaced girder at the Ziya River New Bridge in Cangzhou. Two damage cases are applied and the acceleration responses at the measuring points are obtained, based on which the damages are identified with the WPECD Method, and the influence of wavelet function and decomposition level is studied. The results show that the WPECD Method can identify structure damage efficiently and can be put into practice.
Resumo:
One of the fundamental aspects in the adaptation of the teaching to the European higher education is changing based models of teacher education to models based on student learning. In this work we present an educational experience developed with the teaching method based on the case method, with a clearly multidisciplinary. The experience has been developed in the teaching of analysis and verification of safety rails. This is a multidisciplinary field that presents great difficulties during their teaching. The use of the case method has given good results in the competences achieved by students
Resumo:
The technique of reinforcement of wooden floors is a matter clearly multidisciplinary. The teaching of the subject using the "traditional" method, explaining the theory first and then proposing and solving problems has not been successful. This paper discusses the results of a teaching experiencie. It has been the teaching of the subject by the case method. The results are clearly superior to those obtained with the traditional methodology.
Resumo:
La segmentación de imágenes es un campo importante de la visión computacional y una de las áreas de investigación más activas, con aplicaciones en comprensión de imágenes, detección de objetos, reconocimiento facial, vigilancia de vídeo o procesamiento de imagen médica. La segmentación de imágenes es un problema difícil en general, pero especialmente en entornos científicos y biomédicos, donde las técnicas de adquisición imagen proporcionan imágenes ruidosas. Además, en muchos de estos casos se necesita una precisión casi perfecta. En esta tesis, revisamos y comparamos primero algunas de las técnicas ampliamente usadas para la segmentación de imágenes médicas. Estas técnicas usan clasificadores a nivel de pixel e introducen regularización sobre pares de píxeles que es normalmente insuficiente. Estudiamos las dificultades que presentan para capturar la información de alto nivel sobre los objetos a segmentar. Esta deficiencia da lugar a detecciones erróneas, bordes irregulares, configuraciones con topología errónea y formas inválidas. Para solucionar estos problemas, proponemos un nuevo método de regularización de alto nivel que aprende información topológica y de forma a partir de los datos de entrenamiento de una forma no paramétrica usando potenciales de orden superior. Los potenciales de orden superior se están popularizando en visión por computador, pero la representación exacta de un potencial de orden superior definido sobre muchas variables es computacionalmente inviable. Usamos una representación compacta de los potenciales basada en un conjunto finito de patrones aprendidos de los datos de entrenamiento que, a su vez, depende de las observaciones. Gracias a esta representación, los potenciales de orden superior pueden ser convertidos a potenciales de orden 2 con algunas variables auxiliares añadidas. Experimentos con imágenes reales y sintéticas confirman que nuestro modelo soluciona los errores de aproximaciones más débiles. Incluso con una regularización de alto nivel, una precisión exacta es inalcanzable, y se requeire de edición manual de los resultados de la segmentación automática. La edición manual es tediosa y pesada, y cualquier herramienta de ayuda es muy apreciada. Estas herramientas necesitan ser precisas, pero también lo suficientemente rápidas para ser usadas de forma interactiva. Los contornos activos son una buena solución: son buenos para detecciones precisas de fronteras y, en lugar de buscar una solución global, proporcionan un ajuste fino a resultados que ya existían previamente. Sin embargo, requieren una representación implícita que les permita trabajar con cambios topológicos del contorno, y esto da lugar a ecuaciones en derivadas parciales (EDP) que son costosas de resolver computacionalmente y pueden presentar problemas de estabilidad numérica. Presentamos una aproximación morfológica a la evolución de contornos basada en un nuevo operador morfológico de curvatura que es válido para superficies de cualquier dimensión. Aproximamos la solución numérica de la EDP de la evolución de contorno mediante la aplicación sucesiva de un conjunto de operadores morfológicos aplicados sobre una función de conjuntos de nivel. Estos operadores son muy rápidos, no sufren de problemas de estabilidad numérica y no degradan la función de los conjuntos de nivel, de modo que no hay necesidad de reinicializarlo. Además, su implementación es mucho más sencilla que la de las EDP, ya que no requieren usar sofisticados algoritmos numéricos. Desde un punto de vista teórico, profundizamos en las conexiones entre operadores morfológicos y diferenciales, e introducimos nuevos resultados en este área. Validamos nuestra aproximación proporcionando una implementación morfológica de los contornos geodésicos activos, los contornos activos sin bordes, y los turbopíxeles. En los experimentos realizados, las implementaciones morfológicas convergen a soluciones equivalentes a aquéllas logradas mediante soluciones numéricas tradicionales, pero con ganancias significativas en simplicidad, velocidad y estabilidad. ABSTRACT Image segmentation is an important field in computer vision and one of its most active research areas, with applications in image understanding, object detection, face recognition, video surveillance or medical image processing. Image segmentation is a challenging problem in general, but especially in the biological and medical image fields, where the imaging techniques usually produce cluttered and noisy images and near-perfect accuracy is required in many cases. In this thesis we first review and compare some standard techniques widely used for medical image segmentation. These techniques use pixel-wise classifiers and introduce weak pairwise regularization which is insufficient in many cases. We study their difficulties to capture high-level structural information about the objects to segment. This deficiency leads to many erroneous detections, ragged boundaries, incorrect topological configurations and wrong shapes. To deal with these problems, we propose a new regularization method that learns shape and topological information from training data in a nonparametric way using high-order potentials. High-order potentials are becoming increasingly popular in computer vision. However, the exact representation of a general higher order potential defined over many variables is computationally infeasible. We use a compact representation of the potentials based on a finite set of patterns learned fromtraining data that, in turn, depends on the observations. Thanks to this representation, high-order potentials can be converted into pairwise potentials with some added auxiliary variables and minimized with tree-reweighted message passing (TRW) and belief propagation (BP) techniques. Both synthetic and real experiments confirm that our model fixes the errors of weaker approaches. Even with high-level regularization, perfect accuracy is still unattainable, and human editing of the segmentation results is necessary. The manual edition is tedious and cumbersome, and tools that assist the user are greatly appreciated. These tools need to be precise, but also fast enough to be used in real-time. Active contours are a good solution: they are good for precise boundary detection and, instead of finding a global solution, they provide a fine tuning to previously existing results. However, they require an implicit representation to deal with topological changes of the contour, and this leads to PDEs that are computationally costly to solve and may present numerical stability issues. We present a morphological approach to contour evolution based on a new curvature morphological operator valid for surfaces of any dimension. We approximate the numerical solution of the contour evolution PDE by the successive application of a set of morphological operators defined on a binary level-set. These operators are very fast, do not suffer numerical stability issues, and do not degrade the level set function, so there is no need to reinitialize it. Moreover, their implementation is much easier than their PDE counterpart, since they do not require the use of sophisticated numerical algorithms. From a theoretical point of view, we delve into the connections between differential andmorphological operators, and introduce novel results in this area. We validate the approach providing amorphological implementation of the geodesic active contours, the active contours without borders, and turbopixels. In the experiments conducted, the morphological implementations converge to solutions equivalent to those achieved by traditional numerical solutions, but with significant gains in simplicity, speed, and stability.
Resumo:
All the interconnected regulated systems are prone to impedance-based interactions making them sensitive to instability and transient-performance degradation. The applied control method affects significantly the characteristics of the converter in terms of sensitivity to different impedance interactions. This paper provides for the first time the whole set of impedance-type internal parameters and the formulas according to which the interaction sensitivity can be fully explained and analyzed. The formulation given in this paper can be utilized equally either based on measured frequency responses or on predicted analytic transfer functions. Usually, the distributed dc-dc systems are constructed by using ready-made power modules without having thorough knowledge on the actual power-stage and control-system designs. As a consequence, the interaction characterization has to be based on the frequency responses measureable via the input and output terminals. A buck converter with four different control methods is experimentally characterized in frequency domain to demonstrate the effect of control method on the interaction sensitivity. The presented analytical models are used to explain the phenomena behind the changes in the interaction sensitivity.
Resumo:
A novel scheme for depth sequences compression, based on a perceptual coding algorithm, is proposed. A depth sequence describes the object position in the 3D scene, and is used, in Free Viewpoint Video, for the generation of synthetic video sequences. In perceptual video coding the human visual system characteristics are exploited to improve the compression efficiency. As depth sequences are never shown, the perceptual video coding, assessed over them, is not effective. The proposed algorithm is based on a novel perceptual rate distortion optimization process, assessed over the perceptual distortion of the rendered views generated through the encoded depth sequences. The experimental results show the effectiveness of the proposed method, able to obtain a very considerable improvement of the rendered view perceptual quality.
Resumo:
Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration. As an example, the thermal behavior of two different kinds of nanoparticles is compared. The results show that, under identical conditions, the use of PEGylated gold nanorods allows for a more efficient heating compared with bare nanorods, and therefore, it results in a more effective therapy.
Resumo:
El objetivo principal alrededor del cual se desenvuelve este proyecto es el desarrollo de un sistema de reconocimiento facial. Entre sus objetivos específicos se encuentran: realizar una primera aproximación sobre las técnicas de reconocimiento facial existentes en la actualidad, elegir una aplicación donde pueda ser útil el reconocimiento facial, diseñar y desarrollar un programa en MATLAB que lleve a cabo la función de reconocimiento facial, y evaluar el funcionamiento del sistema desarrollado. Este documento se encuentra dividido en cuatro partes: INTRODUCCIÓN, MARCO TEÓRICO, IMPLEMENTACIÓN, y RESULTADOS, CONCLUSIONES Y LÍNEAS FUTURAS. En la primera parte, se hace una introducción relativa a la actualidad del reconocimiento facial y se comenta brevemente sobre las técnicas existentes para desarrollar un sistema biométrico de este tipo. En ella se justifican también aquellas técnicas que acabaron formando parte de la implementación. En la segunda parte, el marco teórico, se explica la estructura general que tiene un sistema de reconocimiento biométrico, así como sus modos de funcionamiento, y las tasas de error utilizadas para evaluar y comparar su rendimiento. Así mismo, se lleva a cabo una descripción más profunda sobre los conceptos y métodos utilizados para efectuar la detección y reconocimiento facial en la tercera parte del proyecto. La tercera parte abarca una descripción detallada de la solución propuesta. En ella se explica el diseño, características y aplicación de la implementación; que trata de un programa elaborado en MATLAB con interfaz gráfica, y que utiliza cuatro sistemas de reconocimiento facial, basados cada uno en diferentes técnicas: Análisis por componentes principales, análisis lineal discriminante, wavelets de Gabor, y emparejamiento de grafos elásticos. El programa ofrece además la capacidad de crear y editar una propia base de datos con etiquetas, dándole aplicación directa sobre el tema que se trata. Se proponen además una serie de características con el objetivo de ampliar y mejorar las funcionalidades del programa diseñado. Dentro de dichas características destaca la propuesta de un modo de verificación híbrido aplicable a cualquier rama de la biometría y un programa de evaluación capaz de medir, graficar, y comparar las configuraciones de cada uno de los sistemas de reconocimiento implementados. Otra característica destacable es la herramienta programada para la creación de grafos personalizados y generación de modelos, aplicable a reconocimiento de objetos en general. En la cuarta y última parte, se presentan al principio los resultados obtenidos. En ellos se contemplan y analizan las comparaciones entre las distintas configuraciones de los sistemas de reconocimiento implementados para diferentes bases de datos (una de ellas formada con imágenes con condiciones de adquisición no controladas). También se miden las tasas de error del modo de verificación híbrido propuesto. Finalmente, se extraen conclusiones, y se proponen líneas futuras de investigación. ABSTRACT The main goal of this project is to develop a facial recognition system. To meet this end, it was necessary to accomplish a series of specific objectives, which were: researching on the existing face recognition technics nowadays, choosing an application where face recognition might be useful, design and develop a face recognition system using MATLAB, and measure the performance of the implemented system. This document is divided into four parts: INTRODUCTION, THEORTICAL FRAMEWORK, IMPLEMENTATION, and RESULTS, CONCLUSSIONS AND FUTURE RESEARCH STUDIES. In the first part, an introduction is made in relation to facial recognition nowadays, and the techniques used to develop a biometric system of this kind. Furthermore, the techniques chosen to be part of the implementation are justified. In the second part, the general structure and the two basic modes of a biometric system are explained. The error rates used to evaluate and compare the performance of a biometric system are explained as well. Moreover, a description of the concepts and methods used to detect and recognize faces in the third part is made. The design, characteristics, and applications of the systems put into practice are explained in the third part. The implementation consists in developing a program with graphical user interface made in MATLAB. This program uses four face recognition systems, each of them based on a different technique: Principal Component Analysis (PCA), Fisher’s Linear Discriminant (FLD), Gabor wavelets, and Elastic Graph Matching (EGM). In addition, with this implementation it is possible to create and edit one´s tagged database, giving it a direct application. Also, a group of characteristics are proposed to enhance the functionalities of the program designed. Among these characteristics, three of them should be emphasized in this summary: A proposal of an hybrid verification mode of a biometric system; and an evaluation program capable of measuring, plotting curves, and comparing different configurations of each implemented recognition system; and a tool programmed to create personalized graphs and models (tagged graph associated to an image of a person), which can be used generally in object recognition. In the fourth and last part of the project, the results of the comparisons between different configurations of the systems implemented are shown for three databases (One of them created with pictures taken under non-controlled environments). The error rates of the proposed hybrid verification mode are measured as well. Finally, conclusions are extracted and future research studies are proposed.
Resumo:
The city of Lorca (Spain) was hit on May 11th, 2011, by two consecutive earth-quakes of magnitudes 4.6 and 5.2 Mw, causing casualties and important damage in buildings. Many of the damaged structures were reinforced concrete frames with wide beams. This study quantifies the expected level of damage on this structural type in the case of the Lorca earth-quake by means of a seismic index Iv that compares the energy input by the earthquake with the energy absorption/dissipation capacity of the structure. The prototype frames investigated represent structures designed in two time periods (1994–2002 and 2003–2008), in which the applicable codes were different. The influence of the masonry infill walls and the proneness of the frames to concentrate damage in a given story were further investigated through nonlinear dynamic response analyses. It is found that (1) the seismic index method predicts levels of damage that range from moderate/severe to complete collapse; this prediction is consistent with the observed damage; (2) the presence of masonry infill walls makes the structure very prone to damage concentration and reduces the overall seismic capacity of the building; and (3) a proper hierarchy of strength between beams and columns that guarantees the formation of a strong column-weak beam mechanism (as prescribed by seismic codes), as well as the adoption of counter-measures to avoid the negative interaction between non-structural infill walls and the main frame, would have reduced the level of damage from Iv=1 (collapse) to about Iv=0.5 (moderate/severe damage)