800 resultados para Face recognition from video
Resumo:
Purpose – The aim of this paper is to examine the process of change in an Australian not-for-profit organization, from a cash-based to an accrual-based accounting system. Its particular focus is the relationship between the image portrayed by accrual accounting adoption and the technical realities of the new system. Design/methodology/approach – Data were gathered from interviews, documents and meetings, and were contextualized and interpreted using institutional theory. Findings – The decision to change to accrual accounting was made at the top of the organizational hierarchy in response to institutional pressure to present a corporate image. The implementation of the new system was poorly conceived, inadequately resourced, and hampered by an authoritarian structure that effectively ignored the technical incompetence and training needs of many accounting staff. This resulted in an accounting system half way between cash and accrual, and very different from the system as it had been promoted. The process caused conflict at all levels of the organizational hierarchy. Research limitations/implications – Accounting in not-for-profit organizations is an under-researched area offering potential for fruitful research in a changing institutional landscape. This institutional approach, while offering just one interpretation of the qualitative data gathered in this project, provides valuable insights about the process of change. Practical implications – Not-for-profit organizations play a vital economic and social role, and need carefully to assess their responses to ongoing institutional pressures. In implementing change, they face the challenge of balancing the promotion of an institutionally acceptable image and the need for technical efficiencies. Originality/value – The examination of change in an organization provides a rich context for the exploration of the dynamic, problematic process by which a new accounting practice is embedded and institutionalized. Keywords Institutional theory, Not-for-profit organizations, Accrual accounting, Change process, Qualitative research, Change management, Decision making, Training needs, Australia Paper type Research paper
Resumo:
Few studies have investigated iatrogenic outcomes from the viewpoint of patient experience. To address this anomaly, the broad aim of this research is to explore the lived experience of patient harm. Patient harm is defined as major harm to the patient, either psychosocial or physical in nature, resulting from any aspect of health care. Utilising the method of Consensual Qualitative Research (CQR), in-depth interviews are conducted with twenty-four volunteer research participants who self-report having been severely harmed by an invasive medical procedure. A standardised measure of emotional distress, the Impact of Event Scale (IES), is additionally employed for purposes of triangulation. Thematic analysis of transcript data indicate numerous findings including: (i) difficulties regarding patients‘ prior understanding of risks involved with their medical procedure; (ii) the problematic response of the health system post-procedure; (iii) multiple adverse effects upon life functioning; (iv) limited recourse options for patients; and (v) the approach desired in terms of how patient harm should be systemically handled. In addition, IES results indicate a clinically significant level of distress in the sample as a whole. To discuss findings, a cross-disciplinary approach is adopted that draws upon sociology, medicine, medical anthropology, psychology, philosophy, history, ethics, law, and political theory. Furthermore, an overall explanatory framework is proposed in terms of the master themes of power and trauma. In terms of the theme of power, a postmodernist analysis explores the politics of patient harm, particularly the dynamics surrounding the politics of knowledge (e.g., notions of subjective versus objective knowledge, informed consent, and open disclosure). This analysis suggests that patient care is not the prime function of the health system, which appears more focussed upon serving the interests of those in the upper levels of its hierarchy. In terms of the master theme of trauma, current understandings of posttraumatic stress disorder (PTSD) are critiqued, and based on data from this research as well as the international literature, a new model of trauma is proposed. This model is based upon the principle of homeostasis observed in biology, whereby within every cell or organism a state of equilibrium is sought and maintained. The proposed model identifies several bio-psychosocial markers of trauma across its three main phases. These trauma markers include: (i) a profound sense of loss; (ii) a lack of perceived control; (iii) passive trauma processing responses; (iv) an identity crisis; (v) a quest to fully understand the trauma event; (vi) a need for social validation of the traumatic experience; and (vii) posttraumatic adaption with the possibility of positive change. To further explore the master themes of power and trauma, a natural group interview is carried out at a meeting of a patient support group for arachnoiditis. Observations at this meeting and members‘ stories in general support the homeostatic model of trauma, particularly the quest to find answers in the face of distressing experience, as well as the need for social recognition of that experience. In addition, the sociopolitical response to arachnoiditis highlights how public domains of knowledge are largely constructed and controlled by vested interests. Implications of the data overall are discussed in terms of a cultural revolution being needed in health care to position core values around a prime focus upon patients as human beings.
Resumo:
Robust speaker verification on short utterances remains a key consideration when deploying automatic speaker recognition, as many real world applications often have access to only limited duration speech data. This paper explores how the recent technologies focused around total variability modeling behave when training and testing utterance lengths are reduced. Results are presented which provide a comparison of Joint Factor Analysis (JFA) and i-vector based systems including various compensation techniques; Within-Class Covariance Normalization (WCCN), LDA, Scatter Difference Nuisance Attribute Projection (SDNAP) and Gaussian Probabilistic Linear Discriminant Analysis (GPLDA). Speaker verification performance for utterances with as little as 2 sec of data taken from the NIST Speaker Recognition Evaluations are presented to provide a clearer picture of the current performance characteristics of these techniques in short utterance conditions.
Resumo:
Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.
Resumo:
To sustain an ongoing rapid growth of video information, there is an emerging demand for a sophisticated content-based video indexing system. However, current video indexing solutions are still immature and lack of any standard. This doctoral consists of a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple audio-visual modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s).
Resumo:
In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountainbiking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.
Resumo:
Video surveillance systems using Closed Circuit Television (CCTV) cameras, is one of the fastest growing areas in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. This work attempts to address these problems by proposing an automatic suspicious behaviour detection which utilises contextual information. The utilisation of contextual information is done via three main components: a context space model, a data stream clustering algorithm, and an inference algorithm. The utilisation of contextual information is still limited in the domain of suspicious behaviour detection. Furthermore, it is nearly impossible to correctly understand human behaviour without considering the context where it is observed. This work presents experiments using video feeds taken from CAVIAR dataset and a camera mounted on one of the buildings Z-Block) at the Queensland University of Technology, Australia. From these experiments, it is shown that by exploiting contextual information, the proposed system is able to make more accurate detections, especially of those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information gives critical feedback to the system designers to refine the system.
Resumo:
Automatic species recognition plays an important role in assisting ecologists to monitor the environment. One critical issue in this research area is that software developers need prior knowledge of specific targets people are interested in to build templates for these targets. This paper proposes a novel approach for automatic species recognition based on generic knowledge about acoustic events to detect species. Acoustic component detection is the most critical and fundamental part of this proposed approach. This paper gives clear definitions of acoustic components and presents three clustering algorithms for detecting four acoustic components in sound recordings; whistles, clicks, slurs, and blocks. The experiment result demonstrates that these acoustic component recognisers have achieved high precision and recall rate.
Resumo:
In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountain biking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.
Resumo:
Teacher professional development provided by education advisors as one-off, centrally offered sessions does not always result in change in teacher knowledge, beliefs, attitudes or practice in the classroom. As the mathematics education advisor in this study, I set out to investigate a particular method of professional development so as to influence change in a practising classroom teacher’s knowledge and practices. The particular method of professional development utilised in this study was based on several principles of effective teacher professional development and saw me working regularly in a classroom with the classroom teacher as well as providing ongoing support for her for a full school year. The intention was to document the effects of this particular method of professional development in terms of the classroom teacher’s and my professional growth to provide insights for others working as education advisors. The professional development for the classroom teacher consisted of two components. The first was the co-operative development and implementation of a mental computation instructional program for the Year 3 class. The second component was the provision of ongoing support for the classroom teacher by the education advisor. The design of the professional development and the mental computation instructional program were progressively refined throughout the year. The education advisor fulfilled multiple roles in the study as teacher in the classroom, teacher educator working with the classroom teacher and researcher. Examples of the professional growth of the classroom teacher and the education advisor which occurred as sequences of changes (growth networks, Hollingsworth, 1999) in the domains of the professional world of the classroom teacher and education advisor were drawn from the large body of data collected through regular face-to-face and email communications between the classroom teacher and the education advisor as well as from transcripts of a structured interview. The Interconnected Model of Professional Growth (Clarke & Hollingsworth, 2002; Hollingsworth, 1999) was used to summarise and represent each example of the classroom teacher’s professional growth. A modified version of this model was used to summarise and represent the professional growth of the education advisor. This study confirmed that the method of professional development utilised could lead to significant teacher professional growth related directly to her work in the classroom. Using the Interconnected Model of Professional Growth to summarise and represent the classroom teacher’s professional growth and the modified version for my professional growth assisted with the recognition of examples of how we both changed. This model has potential to be used more widely by education advisors when preparing, implementing, evaluating and following-up on planned teacher professional development activities. The mental computation instructional program developed and trialled in the study was shown to be a successful way of sequencing and managing the teaching of mental computation strategies and related number sense understandings to Year 3 students. This study was conducted in one classroom, with one teacher in one school. The strength of this study was the depth of teacher support provided made possible by the particular method of the professional development, and the depth of analysis of the process. In another school, or with another teacher, this might not have been as successful. While I set out to change my practice as an education advisor I did not expect the depth of learning I experienced in terms of my knowledge, beliefs, attitudes and practices as an educator of teachers. This study has changed the way in which I plan to work as an education advisor in the future.
Resumo:
Purpose – The purpose of this paper is to examine the use of short video tutorials in a post-graduate accounting subject, as a means of helping students develop and enhance independent learning skills. Design/methodology/approach – In total, five short (approximately five to 10 minutes) video tutorials were introduced in an effort to shift the reliance for learning from the lecturer to the student. Data on students’ usage of online video tutorials, and comments by students in university questionnaires were collated over three semesters from 2008 to 2009. Interviews with students were then conducted in late 2009 to more comprehensively evaluate the use and perceived benefits of video tutorials. Findings – Findings reveal preliminary but positive outcomes in terms of both more efficient and effective teaching and learning. Research limitations/implications – The shift towards more independent learning through the use of video tutorials has positive implications for educators, employers, and professional accounting bodies; each of whom has identified the need for this skill in accounting graduates. Practical implications – The use of video tutorials has the potential for more rewarding teaching and more effective learning. Originality/value – This study is one of the first to examine the use and benefits of video tutorials as a means of developing independent learning skills in accountancy students – addressing a key concern within the profession.
Resumo:
Purpose – To investigate and identify the patterns of interaction between searchers and search engine during web searching. Design/methodology/approach – The authors examined 2,465,145 interactions from 534,507 users of Dogpile.com submitted on May 6, 2005, and compared query reformulation patterns. They investigated the type of query modifications and query modification transitions within sessions. Findings – The paper identifies three strong query reformulation transition patterns: between specialization and generalization; between video and audio, and between content change and system assistance. In addition, the findings show that web and images content were the most popular media collections. Originality/value – This research sheds light on the more complex aspects of web searching involving query modifications.
Resumo:
Prevailing video adaptation solutions change the quality of the video uniformly throughout the whole frame in the bitrate adjustment process; while region-of-interest (ROI)-based solutions selectively retains the quality in the areas of the frame where the viewers are more likely to pay more attention to. ROI-based coding can improve perceptual quality and viewer satisfaction while trading off some bandwidth. However, there has been no comprehensive study to measure the bitrate vs. perceptual quality trade-off so far. The paper proposes an ROI detection scheme for videos, which is characterized with low computational complexity and robustness, and measures the bitrate vs. quality trade-off for ROI-based encoding using a state-of-the-art H.264/AVC encoder to justify the viability of this type of encoding method. The results from the subjective quality test reveal that ROI-based encoding achieves a significant perceptual quality improvement over the encoding with uniform quality at the cost of slightly more bits. Based on the bitrate measurements and subjective quality assessments, the bitrate and the perceptual quality estimation models for non-scalable ROI-based video coding (AVC) are developed, which are found to be similar to the models for scalable video coding (SVC).
Resumo:
Feature extraction and selection are critical processes in developing facial expression recognition (FER) systems. While many algorithms have been proposed for these processes, direct comparison between texture, geometry and their fusion, as well as between multiple selection algorithms has not been found for spontaneous FER. This paper addresses this issue by proposing a unified framework for a comparative study on the widely used texture (LBP, Gabor and SIFT) and geometric (FAP) features, using Adaboost, mRMR and SVM feature selection algorithms. Our experiments on the Feedtum and NVIE databases demonstrate the benefits of fusing geometric and texture features, where SIFT+FAP shows the best performance, while mRMR outperforms Adaboost and SVM. In terms of computational time, LBP and Gabor perform better than SIFT. The optimal combination of SIFT+FAP+mRMR also exhibits a state-of-the-art performance.