900 resultados para FORESTs database
Resumo:
BACKGROUND: Detecting a benefit from closure of patent foramen ovale in patients with cryptogenic stroke is hampered by low rates of stroke recurrence and uncertainty about the causal role of patent foramen ovale in the index event. A method to predict patent foramen ovale-attributable recurrence risk is needed. However, individual databases generally have too few stroke recurrences to support risk modeling. Prior studies of this population have been limited by low statistical power for examining factors related to recurrence. AIMS: The aim of this study was to develop a database to support modeling of patent foramen ovale-attributable recurrence risk by combining extant data sets. METHODS: We identified investigators with extant databases including subjects with cryptogenic stroke investigated for patent foramen ovale, determined the availability and characteristics of data in each database, collaboratively specified the variables to be included in the Risk of Paradoxical Embolism database, harmonized the variables across databases, and collected new primary data when necessary and feasible. RESULTS: The Risk of Paradoxical Embolism database has individual clinical, radiologic, and echocardiographic data from 12 component databases, including subjects with cryptogenic stroke both with (n = 1925) and without (n = 1749) patent foramen ovale. In the patent foramen ovale subjects, a total of 381 outcomes (stroke, transient ischemic attack, death) occurred (median follow-up 2·2 years). While there were substantial variations in data collection between studies, there was sufficient overlap to define a common set of variables suitable for risk modeling. CONCLUSION: While individual studies are inadequate for modeling patent foramen ovale-attributable recurrence risk, collaboration between investigators has yielded a database with sufficient power to identify those patients at highest risk for a patent foramen ovale-related stroke recurrence who may have the greatest potential benefit from patent foramen ovale closure.
Resumo:
Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p≤0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa.
Resumo:
This study investigates four decades of socio-economic and environmental change in a shifting cultivation landscape in the northern uplands of Laos. Historical changes in land cover and land use were analyzed using a chronological series of remote sensing data. Impacts of landscape change on local livelihoods were investigated in seven villages through interviews with various stakeholders. The study reveals that the complex mosaics of agriculture and forest patches observed in the study area have long constituted key assets for the resilience of local livelihood systems in the face of environmental and socio-economic risks. However, over the past 20 years, a process of segregating agricultural and forest spaces has increased the vulnerability of local land users. This process is a direct outcome of policies aimed at increasing national forest cover, eradicating shifting cultivation and fostering the emergence of more intensive and commercial agricultural practices. We argue that agriculture-forest segregation should be buffered in such a way that a diversity of livelihood opportunities and economic development pathways can be maintained.