894 resultados para FIXED-BED REACTOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we analyzed the operational characteristics of a 1.2-MW rice husk gasification and power generation plant located in Changxing, Zhejiang province, China. The influences of gasification temperature, equivalence ratio (ER), feeding rate and rice husk water content on the gasification characteristics in a fluidized bed gasifier were investigated. The axial temperature profile in the dense phase of the gasifier showed that inadequate fluidization occurred inside the bed, and that the temperature was closely related to changes in ER and feeding rate. The bed temperature increased linearly with increasing ER when the feeding rate was kept constant, while a higher feeding rate corresponded to a lower bed temperature at fixed ER. The gas heating value decreased with increasing temperature, while the feeding rate had little effect. When the gasification temperature was 700-800C, the gas heating value ranged from 5450-6400kJ/Nm3. The water content of the rice husk had an obvious influence on the operation of the gasifier: increases in water content up to 15% resulted in increasing ER and gas yield, while water contents above 15% caused aberrant temperature fluctuations. The problems in this plant are discussed in the light of operational experience of MW-scale biomass gasification and power generation plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and operation of a new clapboard-type internal circulating fluidized-bed gasifier is proposed in this article. By arranging the clapboard in the bed, the gasifier is thus divided into two regions, which are characterized by different fluidization velocities. The bed structure is designed so that it can guide the circulating flow passing through the two regions, and therefore the feedstock particles entrained in the flow experience longer residence time. The experimental results based on the present new design, operating in the temperature range of 790 degrees C-850 degrees C, indicate that the gas yield is from 1.6-1.9 Nm(3)/kg feedstock, the gas enthalpies are 5,345 kJ/Nm(3) for wood chip and 4,875 kJ/m(3) for rice husk, and a gasification efficiency up to 75% can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass gasification is an important method to obtain renewable hydrogen, However, this technology still stagnates in a laboratory scale because of its high-energy consumption. In order to get maximum hydrogen yield and decrease energy consumption, this study applies a self-heated downdraft gasifier as the reactor and uses char as the catalyst to study the characteristics of hydrogen production from biomass gasification. Air and oxygen/steam are utilized as the gasifying agents. The experimental results indicate that compared to biomass air gasification, biomass oxygen/steam gasification improves hydrogen yield depending on the volume of downdraft gasifier, and also nearly doubles the heating value of fuel gas. The maximum lower heating value of fuel gas reaches 11.11 MJ/ N m(3) for biomass oxygen/steam gasification. Over the ranges of operating conditions examined, the maximum hydrogen yield reaches 45.16 g H-2/kg biomass. For biomass oxygen/steam gasification, the content of H-2 and CO reaches 63.27-72.56%, while the content Of H2 and CO gets to 52.19-63.31% for biomass air gasification. The ratio of H-2/CO for biomass oxygen/steam gasification reaches 0.70-0.90, which is lower than that of biomass air gasification, 1.06-1.27. The experimental and comparison results prove that biomass oxygen/steam gasification in a downdraft gasifier is an effective, relatively low energy consumption technology for hydrogen-rich gas production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methane hydration process is investigated in a semi-continuous stirred tank reactor. Liquid temperatures and reaction rates without stirrer are compared with those occurring with stirrer, while at the same time better stirring conditions of the methane hydration process are given by the experiments. Some basic data of fluid mechanics, for example, stirring Reynolds number, Froucle number and stirrer power, are calculated during the methane hydration process, which can be applied to evaluate stirrer capacity and provide some basic data for a scaled up reactor. Based on experiment and calculations in this work, some conclusions are drawn. First, the stirrer has great influence on the methane hydration process. Batch stirring is helpful to improve the mass transfer and heat transfer performances of the methane hydration process. Second, induction time can be shortened effectively by use of the stirrer. Third, in this paper, the appropriate stirring velocity and stirring time were 320 rpm and 30 min, respectively, at 5.0 MPa, for which the storage capacity and reaction time were 159.1 V/V and 370 min, respectively. Under the condition of the on-flow state, the initial stirring Reynolds number of the fluid and the stirring power were 12,150 and 0.54 W, respectively. Fourth, some suggestions, for example, the use of another type of stirrer or some baffles, are proposed to accelerate the methane hydration process. Comparing with literature data, higher storage capacity and hydration rate are achieved in this work. Moreover, some fluid mechanics parameters are calculated, which can provide some references to engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scattering of linear water waves by an infinitely long rectangular structure parallel to a vertical wall in oblique seas is investigated. Analytical expressions for the diffracted potentials are derived using the method of separation of variables. The unknown coefficients in the expressions are determined through the application of the eigenfunction expansion matching method. The expressions for wave forces on the structure are given. The calculated results are compared with those obtained by the boundary element method. In addition, the influences of the wall, the angle of wave incidence, the width of the structure, and the distance between the structure and the wall on wave forces are discussed. The method presented here can be easily extended to the study of the diffraction of obliquely incident waves by multiple rectangular structures.