995 resultados para FINITE-AMPLITUDE BANKS
Resumo:
We investigate the steady-state optical bistability behavior in a three-level A-type atomic system closed by a microwave field under the condition that the applied fields are in resonance with corresponding atomic transitions. It is shown that the bistable hysteresis cycles can be controlled by both the amplitude and the phase of the microwave field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The 0.2% experimental accuracy of the 1968 Beers and Hughes measurement of the annihilation lifetime of ortho-positronium motivates the attempt to compute the first order quantum electrodynamic corrections to this lifetime. The theoretical problems arising in this computation are here studied in detail up to the point of preparing the necessary computer programs and using them to carry out some of the less demanding steps -- but the computation has not yet been completed. Analytic evaluation of the contributing Feynman diagrams is superior to numerical evaluation, and for this process can be carried out with the aid of the Reduce algebra manipulation computer program.
The relation of the positronium decay rate to the electronpositron annihilation-in-flight amplitude is derived in detail, and it is shown that at threshold annihilation-in-flight, Coulomb divergences appear while infrared divergences vanish. The threshold Coulomb divergences in the amplitude cancel against like divergences in the modulating continuum wave function.
Using the lowest order diagrams of electron-positron annihilation into three photons as a test case, various pitfalls of computer algebraic manipulation are discussed along with ways of avoiding them. The computer manipulation of artificial polynomial expressions is preferable to the direct treatment of rational expressions, even though redundant variables may have to be introduced.
Special properties of the contributing Feynman diagrams are discussed, including the need to restore gauge invariance to the sum of the virtual photon-photon scattering box diagrams by means of a finite subtraction.
A systematic approach to the Feynman-Brown method of Decomposition of single loop diagram integrals with spin-related tensor numerators is developed in detail. This approach allows the Feynman-Brown method to be straightforwardly programmed in the Reduce algebra manipulation language.
The fundamental integrals needed in the wake of the application of the Feynman-Brown decomposition are exhibited and the methods which were used to evaluate them -- primarily dis persion techniques are briefly discussed.
Finally, it is pointed out that while the techniques discussed have permitted the computation of a fair number of the simpler integrals and diagrams contributing to the first order correction of the ortho-positronium annihilation rate, further progress with the more complicated diagrams and with the evaluation of traces is heavily contingent on obtaining access to adequate computer time and core capacity.
Resumo:
Using the correction terms in Heegaard Floer homology, we prove that if a knot in S3 admits a positive integral T-, O-, or I-type surgery, it must have the same knot Floer homology as one of the knots given in our complete list, and the resulting manifold is orientation-preservingly homeomorphic to the p-surgery on the corresponding knot.
Resumo:
An analytic technique is developed that couples to finite difference calculations to extend the results to arbitrary distance. Finite differences and the analytic result, a boundary integral called two-dimensional Kirchhoff, are applied to simple models and three seismological problems dealing with data. The simple models include a thorough investigation of the seismologic effects of a deep continental basin. The first problem is explosions at Yucca Flat, in the Nevada test site. By modeling both near-field strong-motion records and teleseismic P-waves simultaneously, it is shown that scattered surface waves are responsible for teleseismic complexity. The second problem deals with explosions at Amchitka Island, Alaska. The near-field seismograms are investigated using a variety of complex structures and sources. The third problem involves regional seismograms of Imperial Valley, California earthquakes recorded at Pasadena, California. The data are shown to contain evidence of deterministic structure, but lack of more direct measurements of the structure and possible three-dimensional effects make two-dimensional modeling of these data difficult.
Resumo:
(1) Equation of State of Komatiite
The equation of state (EOS) of a molten komatiite (27 wt% MgO) was detennined in the 5 to 36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, US, and particle velocity, UP, in km/s follow the linear relationship US = 3.13(±0.03) + 1.47(±0.03) UP. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this US-UP relationship gives the isentropic bulk modulus KS = 27.0 ± 0.6 GPa, and its first and second isentropic pressure derivatives, K'S = 4.9 ± 0.1 and K"S = -0.109 ± 0.003 GPa-1.
The calculated liquidus compression curve agrees within error with the static compression results of Agee and Walker [1988a] to 6 GPa. We detennine that olivine (FO94) will be neutrally buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this komatiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite may be neutrally buoyant near 70 GPa.
At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal to the calculated density of an equivalent mixture of dense solid oxide components. This observation supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk (PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from ascending from depths greater than 400 km.
The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated by adiabatic melting come from source regions in the lower transition zone (≈500-670 km) or the lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hindered. Although komatiitic magmas are thought to separate from their coexisting crystals at a temperature =200°C greater than that for modern MORBs, their ultimate sources are predicted to be diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter than the sources of MORBs and derived from great depth.
We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model considers the thermal structure of the magma ocean, density constraints on crystal segregation, and approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the core-mantle boundary. Perovskite buoyancy at > 70 GPa may lead to a compositionally stratified lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this septum must be permeable.
(2) Viscosity Measurement with Shock Waves
We have examined in detail the analytical method for measuring shear viscosity from the decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions are discussed. The validity of the viscous perturbation approach is examined by numerically solving the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabilities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimental results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity determined by this method may reflect the existence of ice VII on the Rayleigh path of the Hugoniot This interpretation reconciles the experimental results with estimates and measurements obtained by other means, and is consistent with the relationship of the Hugoniot with the phase diagram for water. Sound waves are generated at 4.8 MHz at in the water experiments at 15 GPa. The existence of anelastic absorption modes near this frequency would also lead to large effective viscosity estimates.
(3) Equation of State of Molybdenum at 1400°C
Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, K'S. of 244±2 GPa and its pressure derivative, K'OS of 4. A fit of shock velocity to particle velocity gives the coefficients of US = CO+S UP to be CO = 4.77±0.06 km/s and S = 1.43±0.05. From the zero pressure sound speed, CO, a bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity measurements. The temperature derivative of the bulk modulus at zero pressure, θKOSθT|P, is approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic Grüneisen parameter is proportional to the density and independent of temperature. The Mie-Grüneisen equation of state adequately describes the high temperature behavior of molybdenum under the present range of shock loading conditions.