929 resultados para FILLED TUBE COLUMNS
Resumo:
Accurate prediction of shellside pressure drop in a baffled shell-and-tube heat exchanger is very difficult because of the complicated shellside geometry. Ideally, all the shellside fluid should be alternately deflected across the tube bundle as it traverses from inlet to outlet. In practice, up to 60% of the shellside fluid may bypass the tube bundle or leak through the baffles. This short-circuiting of the main flow reduces the efficiency of the exchanger. Of the various shellside methods, it is shown that only the multi-stream methods, which attempt to obtain the shellside flow distribution, predict the pressure drop with any degree of accuracy, the various predictions ranging from -30% to +70%, generally overpredicting. It is shown that the inaccuracies are mainly due to the manner in which baffle leakage is modelled. The present multi-stream methods do not allow for interactions of the various flowstreams, and yet it is shown that three main effects are identified, a) there is a strong interaction between the main cross flow and the baffle leakage streams, enhancing the crossflow pressure drop, b) there is a further short-circuit not considered previously i.e. leakage in the window, and c) the crossflow does not penetrate as far, on average, as previously supposed. Models are developed for each of these three effects, along with a new windowflow pressure drop model, and it is shown that the effect of baffle leakage in the window is the most significant. These models developed to allow for various interactions, lead to an improved multi-stream method, named the "STREAM-INTERACTION" method. The overall method is shown to be consistently more accurate than previous methods, with virtually all the available shellside data being predicted to within ±30% and over 60% being within ±20%. The method is, thus, strongly recommended for use as a design method.
Resumo:
The thesis presents experimental results for shell-side transfer coefficients and pressure drops across four different tube banks, using small-scale models, with yawed tubes, as found in many types of heat exchangers, boilers and nuclear reactors. The tube banks investigated have a staggered tube layout on a rotated square pitch, with a 1.25 pitch-to-diameter ratio. The angle of attack was varied between 45o and 90o. An extensive range of Reynolds number, i.e. 0.5. to 12,600, covering so-called laminar, transition and turbulent flows, was investigated. A diffusion-controlled electrochemical mass transfer technique has been employed to measure mass transfer coefficients. The heat transfer coefficients may be then readily obtained from the mass transfer values by applying the well-established Chilton-Colburn analogy. The results for the normal tube bank, which forms the base case for the study on inclined tube banks, show close agreement with previous work. The transfer coefficients and pressure drops of the inclined tube banks are compared with results from the ideal normal tube bank to examine the effect of inclination angle on heat transfer and pressure drop variations. The variation of the transfer coefficients row-by-row and the entrance and exit effects have also been investigated. An auxilary investigation has been carried out on the role of natural convection. A preliminary correlation of transfer coefficients and pressure drops against the variation in the yaw angle has been attempted. The results are discussed in the light of the few existing theoretical treatments and experimental data for these situations, and recommendations made for future work.
Resumo:
This investigation examined the process of the longitudinal rolling of tubes through a set of three driven grooved rolls. Tubes were rolled with or without internal support i.e. under mandrel rolling or sinking conditions. Knowledge was required of the way in which the roll separating force and rolling torque vary for different conditions of rolling. The objective of this work being to obtain a better understanding and optimization of the mechanics of the process. The design and instrumentation of a complete experimental three-roll mill for the rolling of lead tube as an analogue material for hot steel, with the measurement of the individual roll force and torque is described. A novel type of roll load cell was incorporated and its design and testing discussed. Employing three roll sizes of 170 mm, 255 mm and 340 mm shroud diameter, precise tube specimens of various tube diameter to thickness ratios were rolled under sinking and mandrel rolling conditions. To obtain an indication of the tube-roll contact areas some of the specimens were partially rolled. For comparative purposes the remaining tubes were completely rolled as a single pass. The roll forces, torques and tube parameters e.g. reduction of area, D/t ratio, were collated and compared for each of the three roll diameters considered. The influence of friction, particularly in the mandrel rolling process, was commented upon. Theoretical studies utilising the equilibrium and energy methods were applied to both the sinking and mandrel rolling processes. In general, the energy approach gave better comparison with experiment, especially for mandrel rolling. The influence of the tube deformation zones on the two processes was observed and on the subsequent modification of the tube-roll arc contact length. A rudimentary attempt was made in the theoretical sinking analysis to allow for the deformation zone prior to roll contact; some success was noted. A general survey of the available tube rolling literature, for both the sinking and mandrel processes has been carried out.
Resumo:
The thesis describes the work carried out to develop a prototype knowledge-based system 'KBS-SETUPP' to generate process plans for the manufacture of seamless tubes. The work is specifically related to a plant in which hollows are made from solid billets using a rotary piercing process and then reduced to required size and finished properties using the fixed plug cold drawing process. The thesis first discusses various methods of tube production in order to give a general background of tube manufacture. Then a review of the automation of the process planning function is presented in terms of its basic sub-tasks and the techniques and suitability of a knowledge-based system is established. In the light of such a review and a case study, the process planning problem is formulated in the domain of seamless tube manufacture, its basic sub-tasks are identified and capabilities and constraints of the available equipment in the specific plant are established. The task of collecting and collating the process planning knowledge in seamless tube manufacture is discussed and is mostly fulfilled from domain experts, analysing of existing manufacturing records specific to plant, textbooks and applicable Standards. For the cold drawing mill, tube-drawing schedules have been rationalised to correspond with practice. The validation of such schedules has been achieved by computing the process parameters and then comparing these with the drawbench capacity to avoid over-loading. The existing models cannot be simulated in the computer program as such, therefore a mathematical model has been proposed which estimates the process parameters which are in close agreement with experimental values established by other researchers. To implement the concepts, a Knowledge-Based System 'KBS- SETUPP' has been developed on Personal Computer using Turbo- Prolog. The system is capable of generating process plans, production schedules and some additional capabilities to supplement process planning. The system generated process plans have been compared with the actual plans of the company and it has been shown that the results are satisfactory and encouraging and that the system has the capabilities which are useful.
Resumo:
The technology of precision bending of tubes has recently increased in importance and is widely demanded for many industrial applications. However, whilst attention has been concentrated on automation and increasing the production rate of the bending machines, it seems that with one exception very little work has been done in order to understand and therefore fundamentally improve the bending process. A new development for the process of draw-bending of tubes, in which the supporting mandrel is axially vibrated at an ultrasonic frequency, has been perfected. A research programme was undertaken to study the mechanics of tube• bending under both vibratory and non-vibratory conditions. For this purpose, a conventional tube-bending machine was modified and equipped with an oscillatory system. Thin-walled mild steel tubes of different diameter to thickness ratios were bent to mean bend radii having various values from 1.5 to 2.0 times the tube diameter. It was found that the application of ultrasonic vibration reduces the process forces and that the force reduction increases with increasing the vibration amplitude. A reduction in the bending torque of up to 30 per cent was recorded and a reduction in the maximum tube-wall thinning of about 15 per cent was observed. The friction vector reversal mechanism as well as a reduction in friction account for the changes of the forces and the strains. Monitoring the mandrel friction during bending showed, in some cases, that the axial vibration reverses the mandrel .mean force from tension to compression and, thus, the mandrel is assisting the tube motion instead of resisting it. A theory has been proposed to describe the mechanics of deformation during draw-bending of tubes, which embodies the conditions of both "with" and "without" mandrel axial vibration. A theoretical analysis, based on the equilibrium of forces approach, has been developed in which the basic process parameters were taken into consideration. The stresses, the strains and the bending torque were calculated utilising this new solution, and a specially written computer programme was used to perform the computations. It was shown that the theory is in good agreement with the measured values of the strains under vibratory and non-vibratory conditions. Also, the predicted bending 'torque showed a similar trend to that recorded experimentally.
Resumo:
The research concerns the development and application of an analytical computer program, SAFE-ROC, that models material behaviour and structural behaviour of a slender reinforced concrete column that is part of an overall structure and is subjected to elevated temperatures as a result of exposure to fire. The analysis approach used in SAFE-RCC is non-linear. Computer calculations are used that take account of restraint and continuity, and the interaction of the column with the surrounding structure during the fire. Within a given time step an iterative approach is used to find a deformed shape for the column which results in equilibrium between the forces associated with the external loads and internal stresses and degradation. Non-linear geometric effects are taken into account by updating the geometry of the structure during deformation. The structural response program SAFE-ROC includes a total strain model which takes account of the compatibility of strain due to temperature and loading. The total strain model represents a constitutive law that governs the material behaviour for concrete and steel. The material behaviour models employed for concrete and steel take account of the dimensional changes caused by the temperature differentials and changes in the material mechanical properties with changes in temperature. Non-linear stress-strain laws are used that take account of loading to a strain greater than that corresponding to the peak stress of the concrete stress-strain relation, and model the inelastic deformation associated with unloading of the steel stress-strain relation. The cross section temperatures caused by the fire environment are obtained by a preceding non-linear thermal analysis, a computer program FIRES-T.