926 resultados para FEMORAL-HEAD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare analgesic efficacy of preoperative versus postoperative administration of carprofen and to determine, if preincisional mepivacaine epidural anesthesia improves postoperative analgesia in dogs treated with carprofen. STUDY DESIGN: Blind, randomized clinical study. ANIMALS: Dogs with femoral (n=18) or pelvic (27) fractures. METHODS: Dogs were grouped by restricted randomization into 4 groups: group 1 = carprofen (4 mg/kg subcutaneously) immediately before induction of anesthesia, no epidural anesthesia; group 2 = carprofen immediately after extubation, no epidural anesthesia; group 3 = carprofen immediately before induction, mepivacaine epidural block 15 minutes before surgical incision; and group 4 = mepivacaine epidural block 15 minutes before surgical incision, carprofen after extubation. All dogs were administered carprofen (4 mg/kg, subcutaneously, once daily) for 4 days after surgery. Physiologic variables, nociceptive threshold, lameness score, pain, and sedation (numerical rating scale [NRS], visual analog scale [VAS]), plasma glucose and cortisol concentration, renal function, and hemostatic variables were measured preoperatively and at various times after surgery. Dogs with VAS pain scores >30 were administered rescue analgesia. RESULTS: Group 3 and 4 dogs had significantly lower pain scores and amount of rescue analgesia compared with groups 1 and 2. VAS and NRS pain scores were not significantly different among groups 1 and 2 or among groups 3 and 4. There was no treatment effect on renal function and hemostatic variables. CONCLUSIONS: Preoperative carprofen combined with mepivacaine epidural anesthesia had superior postoperative analgesia compared with preoperative carprofen alone. When preoperative epidural anesthesia was performed, preoperative administration of carprofen did not improve postoperative analgesia compared with postoperative administration of carprofen. CLINICAL RELEVANCE: Preoperative administration of systemic opioid agonists in combination with regional anesthesia and postoperative administration of carprofen provides safe and effective pain relieve in canine fracture repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 +/- 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 +/- 0.58 vs. 3.65 +/- 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 +/- 7.27 to 19.83 +/- 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of relevant clinical monitoring parameters for helping guide the intensive care therapy in patients with severe head injury, is one of the most demanding issues in neurotrauma research. New insights into cerebral autoregulation and metabolism have revealed that a rigid cerebral perfusion pressure (CPP) regimen might not be suitable for all severe head injured patients. We thus developed an online analysis technique to monitor the correlation (AI rho) between the spontaneous fluctuations of the mean arterial blood pressure (MABP) and the intracranial pressure (ICP). In addition, brain tissue oxygen (PtiO2) and metabolic microdialysate measures including glucose and lactate were registered. We found that in patients with good outcome, the AI rho values were significantly lower as compared with patients with poor outcome. Accordingly, microdialysate glucose and lactate were significantly higher in the good outcome group. We conclude that online determination of AI rho offers a valuable additional and technically easily performable tool for guidance of therapy in patients with severe head injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For CT scan planning, scan projection radiographs (SPR) are used. Tube tension and current for head SPR can be reduced to a minimum because of the small head diameter and because only high-contrast structures need to be visualized for planning. The goal of this study was to investigate SPR of the head in respect to effective doses, the influence of dose-reduction measures, and comparison with conventional x-ray.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trousseau Syndrome is a paraneoplastic procoagulant phenomenon. Heparin-induced thrombocytopenia (HIT) is a rare complication of anticoagulation with heparin. To our knowledge, the coincidence of the two has not been reported so far. We report a case of an acute thrombosis of the left femoral artery and distal leg arteries in a patient with an otherwise normal cardiovascular status. Endovascular revascularization attempts using mechanical rotational thrombectomy catheter, aspiration and local thrombolysis were unsuccessful. Progressive coagulation along the intra-arterial catheter was seen. Surgical thrombectomy of the femoral-pedal axis was successful, but the patient developed an immune-mediated HIT postoperatively. An adenocarcinoma of the colon was the likely cause for the initial arterial thrombosis, and probably adversely affected endovascular revascularization attempts. Subsequent HIT with microvascular thrombosis worsened ischemic damage leading to a below knee-amputation, despite patent large vessels. Compared to venous thrombosis, arterial thrombosis is a rare manifestation of Trousseau syndrome. The coincidence of it with HIT is even rarer. There may be a causal relationship between the two.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: The effect of normobaric hyperoxia (fraction of inspired O2 [FIO2] concentration 100%) in the treatment of patients with traumatic brain injury (TBI) remains controversial. The aim of this study was to investigate the effects of normobaric hyperoxia on five cerebral metabolic indices, which have putative prognostic significance following TBI in humans. METHODS: At two independent neurointensive care units, the authors performed a prospective study of 52 patients with severe TBI who were treated for 24 hours with 100% FIO2, starting within 6 hours of admission. Data for these patients were compared with data for a cohort of 112 patients who were treated in the past; patients in the historical control group matched the patients in our study according to their Glasgow Coma Scale scores after resuscitation and their intracranial pressure within the first 8 hours after admission. Patients were monitored with the aid of intracerebral microdialysis and tissue O2 probes. Normobaric hyperoxia treatment resulted in a significant improvement in biochemical markers in the brain compared with the baseline measures for patients treated in our study (patients acting as their own controls) and also compared with findings from the historical control group. In the dialysate the glucose levels increased (369.02 +/- 20.1 micromol/L in the control group and 466.9 +/- 20.39 micromol/L in the 100% O2 group, p = 0.001), whereas the glutamate and lactate levels significantly decreased (p < 0.005). There were also reductions in the lactate/glucose and lactate/pyruvate ratios. Intracranial pressure in the treatment group was reduced significantly both during and after hyperoxia treatment compared with the control groups (15.03 +/- 0.8 mm Hg in the control group and 12.13 +/- 0.75 mm Hg in the 100% O2 group, p < 0.005) with no changes in cerebral perfusion pressure. Outcomes of the patients in the treatment group improved. CONCLUSIONS: The results of the study support the hypothesis that normobaric hyperoxia in patients with severe TBI improves the indices of brain oxidative metabolism. Based on these data further mechanistic studies and a prospective randomized controlled trial are warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of the study was to measure the effects of increased inspired oxygen on patients suffering severe head injury and consequent influences on the correlations between CPP and brain tissue oxygen (PtiO2) and the effects on brain microdialysate glucose and lactate. METHODS: In a prospective, observational study 20 patients suffering severe head injury (GCS< or =8) were studied between January 2000 and December 2001. Each patient received an intraparenchymal ICP device and an oxygen sensor and, in 17 patients brain microdialysis was performed at the cortical-subcortical junction. A 6 h 100% oxygen challenge (F IO2 1.0) ( Period A) was performed as early as possible in the first 24 hours after injury and compared with a similar 6 hour period following the challenge ( Period B). Statistics were performed using the linear correlation analysis, one sample t-test, as well as the Lorentzian peak correlation analysis. RESULTS: F IO2 was positively correlated with PtiO2 (p < 0.0001) over the whole study period. PtiO2 was significantly higher (p < 0.001) during Period A compared to Period B. CPP was positively correlated with PtiO2 (p < 0.001) during the whole study. PtiO2 peaked at a CPP value of 78 mmHg performing a Lorentzian peak correlation analysis of all patients over the whole study. During Period A the brain microdialysate lactate was significantly lower (p = 0.015) compared with Period B. However the brain microdialysate glucose remained unchanged. CONCLUSION: PtiO2 is significantly positively correlated with F IO2, meaning that PtiO2 can be improved by the simple manipulation of increasing F IO2 and ABGAO2. PtiO2 is positively correlated with CPP, peaking at a CPP value of 78 mmHg. Brain microdialysate lactate can be lowered by increasing PtiO2 values, as observed during the oxygen challenge, whereas microdialysate glucose is unchanged during this procedure. Extension of the oxygen challenge time and measurement of the intermediate energy metabolite pyruvate may clarify the metabolic effects of the intervention. Prospective comparative studies, including analysis of outcome on a larger multicenter basis, are necessary to assess the long term clinical benefits of this procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms causing brain damage after acute subdural hematoma (SDH) are poorly understood. A decrease in cerebral blood flow develops immediately after the hematoma forms, thus reducing cerebral oxygenation. This in turn may activate mitochondrial failure and tissue damage leading to ionic imbalance and possibly to cellular breakdown. The purpose of this study was to test whether a simple therapeutic measure, namely increased fraction of inspired oxygen (FiO2 100), and hence increased arterial and brain tissue oxygen tension, can influence brain glucose and lactate dynamics acutely after subdural hematoma in the rat. Twenty-five male Sprague-Dawley anesthetized rats were studied before, during and after induction of the SDH in two separate groups. The Oxygen group (n = 10) was ventilated with 100% oxygen immediately after induction of the SDH. The Air group (n = 10) was ventilated during the entire study with 21% oxygen. Brain microdialysate samples were analyzed for glucose and lactate. All rats were monitored with femoral arterial blood pressure catheters, arterial blood gas analysis, arterial glucose, lactate and end tidal CO2 (EtCO2). Five male Sprague-Dawley rats were sham operated to measure the effect of oxygen challenge on glucose-lactate dynamics without injury. Arterial oxygen tension in the Oxygen group was 371 +/- 30 mmHg and was associated with significantly greater increase in dialysate lactate in the first 30 min after induction of SDH. Dialysate glucose initially dropped in both groups, after SDH, but then reverted significantly faster to values above baseline in the Oxygen group. Changes in ventilatory parameters had no significant effect on dialysate glucose and lactate parameters in the sham group. Extracellular dialysate lactate and glucose are influenced by administration of 100% O2 after SDH. Dialysate glucose normalizes significantly quicker upon 100% oxygen ventilation. We hypothesize that increased neural tissue oxygen tension, in presence of reduced regional CBF, and possibly compromised mitochondrial function, after acute SDH results in upregulation of rate-limiting enzyme systems responsible for both glycolytic and aerobic metabolism. Similar changes have been seen in severe human head injury, and suggest that a simple therapeutic measure, such as early ventilation with 100% O2, may improve cerebral energy metabolism, early after SDH. Further studies to measure the generation of adenosine triphosphate (ATP) are needed to validate the hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early impaired cerebral blood flow (CBF) after severe head injury (SHI) leads to poor brain tissue oxygen delivery and lactate accumulation. The purpose of this investigation was to elucidate the relationship between CBF, local dialysate lactate (lact(md)) and dialysate glucose (gluc(md)), and brain tissue oxygen levels (PtiO2) under arterial normoxia. The effect of increased brain tissue oxygenation due to high fractions of inspired oxygen (FiO2) on lact(md) and CBF was explored. A total of 47 patients with SHI were enrolled in this studies (Glasgow Coma Score [GCS] < 8). CBF was first assessed in 40 patients at one time point in the first 96 hours (27 +/- 28 hours) after SHI using stable xenon computed tomography (Xe-CT) (30% inspired xenon [FiXe] and 35% FiO2). In a second study, sequential double CBF measurements were performed in 7 patients with 35% FiO2 and 60% FiO2, respectively, with an interval of 30 minutes. In a subsequent study, 14 patients underwent normobaric hyperoxia by increasing FiO2 from 35 +/- 5% to 60% and then 100% over a period of 6 hours. This was done to test the effect of normobaric hyperoxia on lact(md) and brain gluc(md), as measured by local microdialysis. Changes in PtiO2 in response to changes in FiO2 were analyzed by calculating the oxygen reactivity. Oxygen reactivity was then related to the 3-month outcome data. The levels of lact(md) and gluc(md) under hyperoxia were compared with the baseline levels, measured at 35% FiO2. Under normoxic conditions, there was a significant correlation between CBF and PtiO2 (R = 0.7; P < .001). In the sequential double CBF study, however, FiO2 was inversely correlated with CBF (P < .05). In the 14 patients undergoing the 6-hour 100% FiO2 challenge, the mean PtiO2 levels increased to 353 (87% compared with baseline), although the mean lact(md) levels decreased by 38 +/- 16% (P < .05). The PtiO2 response to 100% FiO2 (oxygen reactivity) was inversely correlated with outcome (P < .01). Monitoring PtiO2 after SHI provides valuable information about cerebral oxygenation and substrate delivery. Increasing arterial oxygen tension (PaO2) effectively increased PtiO2, and brain lact(md) was reduced by the same maneuver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary brain damage, following severe head injury is considered to be a major cause for bad outcome. Impressive reductions of the extent of brain damage in experimental studies have raised high expectations for cerebral neuroprotective treatment, in the clinic. Therefore multiple compounds were and are being evaluated in trials. In this review we discuss the pathomechanisms of traumatic brain damage, based upon their clinical importance. The role of hypothermia, mannitol, barbiturates, steroids, free radical scavengers, arachidonic acid inhibitors, calcium channel blockers, N-methyl-D-aspartate (NMDA) antagonists, and potassium channel blockers, will be discussed. The importance of a uniform strategic approach for evaluation of potentially interesting new compounds in clinical trials, to ameliorate outcome in patients with severe head injury, is proposed. To achieve this goal, two nonprofit organizations were founded: the European Brain Injury Consortium (EBIC) and the American Brain Injury Consortium (ABIC). Their aim lies in conducting better clinical trials, which incorporate lessons learned from previous trials, such that the succession of negative, or incomplete studies, as performed in previous years, will cease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: Early impairment of cerebral blood flow in patients with severe head injury correlates with poor brain tissue O2 delivery and may be an important cause of ischemic brain damage. The purpose of this study was to measure cerebral tissue PO2, lactate, and glucose in patients after severe head injury to determine the effect of increased tissue O2 achieved by increasing the fraction of inspired oxygen (FiO2). METHODS: In addition to standard monitoring of intracranial pressure and cerebral perfusion pressure, the authors continuously measured brain tissue PO2, PCO2, pH, and temperature in 22 patients with severe head injury. Microdialysis was performed to analyze lactate and glucose levels. In one cohort of 12 patients, the PaO2 was increased to 441+/-88 mm Hg over a period of 6 hours by raising the FiO2 from 35+/-5% to 100% in two stages. The results were analyzed and compared with the findings in a control cohort of 12 patients who received standard respiratory therapy (mean PaO2 136.4+/-22.1 mm Hg). The mean brain PO2 levels increased in the O2-treated patients up to 359+/-39% of the baseline level during the 6-hour FiO2 enhancement period, whereas the mean dialysate lactate levels decreased by 40% (p < 0.05). During this O2 enhancement period, glucose levels in brain tissue demonstrated a heterogeneous course. None of the monitored parameters in the control cohort showed significant variations during the entire observation period. CONCLUSIONS: Markedly elevated lactate levels in brain tissue are common after severe head injury. Increasing PaO2 to higher levels than necessary to saturate hemoglobin, as performed in the O2-treated cohort, appears to improve the O2 supply in brain tissue. During the early period after severe head injury, increased lactate levels in brain tissue were reduced by increasing FiO2. This may imply a shift to aerobic metabolism.