807 resultados para Eutectic alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biocompatibility of NiTi after laser welding was studied by examining the in vitro (mesenchymal stem cell) MSC responses at different sets of time varying from early (4 to 12 h) to intermediate phases (1 and 4 days) of cell culture. The effects of physical (surface roughness and topography) and chemical (surface Ti/Ni ratio) changes as a consequence of laser welding in different regions (WZ, HAZ, and BM) on the cell morphology and cell coverage were studied. The results in this research indicated that the morphology of MSCs was affected primarily by the topographical factors in the WZ: the well-defined and directional dendritic pattern and the presence of deeper grooves. The morphology of MSCs was not significantly modulated by surface roughness. Despite the possible initial Ni release in the medium during the cell culture, no toxic effect seemed to cause to MSCs as evidenced by the success of adhesion and spreading of the cells onto different regions in the laser weldment. The good biocompatibility of the NiTi laser weldment has been firstly reported in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, two L27 Taguchi experiments were carried out to study the effect of fibre laser welding parameters and their interactions upon the weld bead aspect ratio of nickel–titanium thin foil. The optimum parameters to produce full penetrated weld with the largest aspect ratio and desirable microstructure were successfully obtained by the Taguchi experimental design. The corrosion property of the optimized NiTi weld in Hank’s solution at 37.5 °C was studied and compared with the as-received NiTi. To improve the corrosion properties of the weld, the effect of post-weld-heat-treatments ranging from 573 to 1173 K was investigated. The corrosion properties, surface morphology, microstructure and Ti/Ni ratio of the heat-treated NiTi weld were analysed. It was found that a post-weld heat treatment at 573 K for 1 h provided the best pitting corrosion resistance at the weld zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a computational framework based on finite element methods to simulate the fibre-embedding process using ultrasonic consolidation process. The computational approach comprises of a material model which takes into account thermal and acoustic softening effects and a friction model which indicates the realistic friction behaviour at the interfaces. The derived material model and developed friction model have been incorporated in finite element model. Using the implemented material and friction model, thermo-mechanical analyses of embedding of fibre in aluminium alloy 3003 has been performed. Effect of different process parameters, such as velocity of sonotrode, displacement amplitude of ultrasonic vibration and applied loads, is studied and compared with the experimental results. The presented work has specially focused on the quality of the developed weld which could be evaluated by the friction work and the coverage of the fibre which is estimated by the plastic flow around the fibre. The computed friction work obtained from the thermomechanial analyses performed in this study show a similar trend as that of the experimentally found fracture energies. © Springer-Verlag London Limited 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement. Copyright © 2009 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of CO electrooxidation on different catalysts using in situ FTIR spectroscopy is presented. As electrode materials, polycrystalline Pt and Ru and a PtRu (50:50) alloy are used. The latter is one of the well-known active alloys for CO oxidation. The potential dependence of the band frequencies for the CO stretch indicates the formation of relatively compact islands at pure Pt and Ru, and a loose adlayer structure at the alloy. This loose structure has a positive effect on the rate of oxidative desorption. CO submonolayer coverages are obtained by integrating the absorption bands for CO produced upon oxidation of adsorbed CO. The band intensities measured at Pt, Ru, and PtRu indicate an influence of the substrate on the absorption coefficient of the CO stretch. It is shown that for a correct description of the catalyst properties toward CO electrooxidation, it must be distinguished between bulk and adsorbed CO. In contrast to the statement of most of the recent papers that a PtRu alloy (50:50) is the material with the highest activity for CO oxidation, it is demonstrated and rationalized in the present paper that for bulk CO oxidation pure Ru is the best catalyst. © 1999 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF; or nitrate, NO). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li, X and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g with a good efficiency (99%) is observed in the DES based on the LiNO salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. © 2013 the Owner Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hierarchical nanoparticle strategy to simultaneously gain super Raman signal amplification, high uniformity, and reproducibility is presented. Using hollow Au-Ag alloy nanourchins, an ultrahigh sensitivity, e.g., down to 1 fM concentrations for DEHP molecule is obtained. A small standard deviation of <10% is achieved by simply dropping and evaporating sub-100 nm nanourchins onto a substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

6061 O Al alloy foils were welded to form monolithic and SiC fibre-embedded samples using the ultrasonic consolidation (UC) process. Contact pressures of 135, 155 and 175 MPa were investigated at 20 kHz frequency, 50% of the oscillation amplitude, 34.5 mm s sonotrode velocity and 20 °C. Deformed microstructures were analysed using electron backscatter diffraction (EBSD). At all contact pressures deformation occurs by non-steady state dislocation glide. Dynamic recovery is active in the upper and lower foils. Friction at the welding interface, instantaneous internal temperatures (0.5-0.8 of the melting temperature, T), contact pressure and fast strain rates result in transient microstructures and grain size reduction by continuous dynamic recrystallization (CDRX) within the bonding zone. Bonding occurs by local grain boundary migration, which allows diffusion and atom interlocking across the contact between two clean surfaces. Textures weaken with increasing contact pressure due to increased strain hardening and different grain rotation rates. High contact pressures enhance dynamic recovery and CDRX. Deformation around the fibre is intense within 50 μm and extends to 450 μm from it. © 2009 Acta Materialia Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction (EBSD) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. © 2009 Editorial Board of CHINA WELDING.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling is a highly demanding machining process due to complex tool geometry and the progressive material failure on the work piece. In this study, a 3D model is developed using commercial finite element software ABAQUS/Explicit. The proposed model simulates the drilling process by taking into account of the damage initiation and evolution of the work piece material, a contact model at the interface between drill bit and work piece and the process parameters. The results of the simulations demonstrate the effects of machining parameters on drilling. The results also confirm the capability and advantage of FE simulation of the drilling process. © 2011 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a computational framework has been proposed to successfully simulate the fibre embedding using ultrasonic consolidation process. The main components of the proposed computational approach are a developed constitutive model and a friction model which are especially suitable for the condition of ultrasonic process. The effect of different process parameters, such as velocity of sonotrode, displacement amplitude of ultrasonic vibration and applied loads are studied. The presented work especially focuses on the quality of the developed weld and the fibre coverage due to the plastic flow around the fibre. The areas of maximum plastic flow predicted by the simulation are confirmed by the EBSD microstructural studies. © 2011 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by haemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear and corrosion of metal-on-metal hip replacements results in wear debris and metal-ion release in vivo, which may subsequently cause pain and hypersensitivity for patients. Retrieved metal-on-metal hip replacements have revealed that two-body sliding wear and three-body abrasive wear are the predominant wear mechanisms. However, there is a lack of understanding of the combined effects of wear/corrosion, especially the effect of abrasion-corrosion.

This study investigates the sliding-corrosion and abrasion-corrosion performance of a cast CoCrMo alloy in simulated hip joint environments using a microabrasion rig integrated with an electrochemical cell. Tests have been conducted in 0.9% NaCl, phosphate buffered saline solution, 25% and 50% bovine serum solutions with 0 or 1 g cm(-3) SiC at 37 degrees C. Experimental results reveal that under abrasion-corrosion test conditions, the presence of proteins increased the total specific wear rate. Conversely, electrochemical noise measurements indicated that the average anodic current levels were appreciably lower for the proteinaceous solutions when compared with the inorganic solutions. A severely deformed nanocrystalline layer was identified immediately below the worn surface for both proteinaceous and inorganic solutions. The layer is formed by a recrystallisation process and/or a strain-induced phase transformation that occurs during microabrasion-corrosion. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some retrieved CoCrMo hip implants have shown that abrasive wear is one of the possible wear mechanisms invoked within such joints. To date, little work has focused on the third body abrasion of CoCrMo and therefore there is a general lack of understanding of the effect of abrasive size and volume concentration on the tribo-corrosion performance of the CoCrMo alloys. The present work assessed the tribo-corrosion behaviour of cast CoCrMo (F-75) under various abrasion-corrosion conditions by using a modified microabrasion tester incorporating a three-electrode electrochemical cell. The effects of reduced abrasive size/hardness and volume concentration, as well as the role of proteins on the tribo-corrosion performance of the cast CoCrMo alloy were addressed. The correlation between electrochemical and mechanical processes for different abrasion-corrosion test conditions has been discussed in detail. Results show that the reduction in abrasive size and volume concentration can significantly affect the abrasion-corrosion wear mechanisms and the wear-induced corrosion response of the material. The finding of this study implies that the smaller/softer third body particles generated in vivo could also result in significant wear-induced corrosion and therefore potential metal ion release, which could be potentially detrimental to both the patient health and the life span of the implants. © 2009 Elsevier Ltd. All rights reserved.