898 resultados para Eucalyptus Pauciflora
Resumo:
For the production of quality seedlings, depending on the physical characteristics of each substrate, more rational nutritional managements, from the of economic-environmental point of view, should be sought. This study aimed to evaluate the development and quality of Eucalyptus grandis × E. urophylla seedlings in terms of substrates and doses of controlledrelease Osmocote® fertilizer. The experiment was conducted with a completely randomized, factorial design, using as substrates: vermiculite+carbonized rice chaff+coconut fiber (1:1:1); vermiculite+coconut fiber (1:1) and vermiculite+coconut fiber (2:1) and doses of 2, 4, 6 and 8kg·m -3 of substrate. The substrates with higher water holding capacity allow seedlings to reach their maximum development in most parameters using lower doses of controlled-release fertilizer. We recommend the application of the controlled-release fertilizer at a dose of 6.0kg·m-3 in vermiculite+carbonized rice chaff+coconut fiber (1:1:1) and vermiculite+coconut fiber (2:1) substrates, and in substrate vermiculite+coconut fiber (1:1) at a dose of 7.0kg·m-3. In each substrate there is a dose range that promotes a greater formation of suitable root systems for planting in the field, which consequently results in seedlings with greater morphological development at nursery.
Resumo:
Eucalyptus is the most important plantation forest species in Brazil. Wilt and canker caused by Ceratocystis fimbriata on eucalyptus were first reported in 1998 in plantations of an E. grandis × E. urophylla hybrid in southern Bahia, Brazil. This work aimed at studying the reaction of different eucalyptus genotypes after inoculation with C. fimbriata isolates, in order to find a possible source of resistance. The study included four isolates of Ceratocystis collected from eucalyptus in different regions. One disc of fungal mycelium with 1-cm-diameter (from colonies growing for 10 days on malt extract agar medium-MEA) was inoculated on the stem of thus injured eucalyptus plants (six months old). A cotton wool moistened with sterile distilled water was wrapped with plastic film. Control plants were inoculated with discs of MEA without fungal colonies. The inoculated plants were kept in a greenhouse. Wilt symptoms were observed 90 days after inoculation. The seedlings were cut in the longitudinal direction of the stem in order to observe the colonization of fungus in the plant xylem. We tested twenty eucalyptus genotypes, but only five showed resistance to all isolates of Ceratocystis, belonging to different species of Eucalyptus: E. urophylla (C2 and C9), E. grandis (C3), E. saligna (C6 and C13) Most E. gramdis genotypes were more susceptible to all four fungal isolates. These results support future studies related to eucalyptus resistance to Ceratocystis.
Resumo:
Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO. •Statistical analysis to determine effects on emission factors.•CO2, CO, CH4 emission factors determined for combustion of Eucalyptus.•Laboratory results agreed with data for Amazonian biomass combustion in field tests.•Combustion behavior under flaming and smoldering was analyzed. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)