918 resultados para Estuarine
Resumo:
The assessment of human impact on complex estuarine systems is a multidisciplinary task that is highly demanding in terms of measurements and fieldwork. Nowadays the use of inexpensive and reliably modeling tools can substantially reduce the amount of measurements needed to characterize a system. These tools are also a convenient way to forecast the future evolution of the system and to study the impact of different scenarios of human influence. In this communication a modeling system composed by hydrodynamic, transport and ecological models is used to assess the current trophic state of Sado Estuary (Portugal) and to predict the future trends of the system based on different scenarios of human intervention. Special care is taken to the impact of changing riverine nutrient loads. Sado estuary is a large European estuary that has been considered until now in good trophic conditions with eutrophication appearing only in some isolated spots. Nevertheless in recent years some studies point out that the situation is changing. Sado estuary is a system with strong environmental opposing interests. It hosts a major industrial and urban center around the city of Setúbal and the upper reaches are used to intensive cultures such as rice. On the other hand the estuary possess an important ecological value since it is used by several important species of fish as a spawning and nursery area and it’s wetlands are used by many species of birds as winter shelters. Due to it’s importance the majority of Sado Estuary is considered as Natural Reserve.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
This special issue of Estuarine, Coastal and Shelf Science synthesizes and updates the developments in science related to Land Ocean Interactions in the Coastal Zone (LOICZ). Frequent updates about the dynamic coastal zone are useful and necessary as global change accelerates. There is an urgent need to improve the knowledge and understanding of the vulnerability of society and ecosystems to global change hazards in the coastal zone (Vermaat et al., 2005). The collection of papers in this special issue places new developments, findings, techniques and insights within the context of LOICZ science. For the convenience of the reader, the references to papers included in this special issue are printed in italic, whereas other references to LOICZ science are in normal print.
Resumo:
Tese dout., Ciências do Mar (Ecologia Marinha), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010
Resumo:
Ecohydrology is a scientific concept applied to problem- solving in environmental issues. It recognises that the present practice of relying nearly exclusively on engineering fixes to solve environmental problems is failing to restore the aquatic environment to a level that can sustain the quality of life that people are demanding. Ecohydrology is based on the ability of science to quantify and explain the relationships between hy- drological processes and biotic dynamics at a catchment scale and to manipulate these processes to increase the robustness of the aquatic system and thus its ability to cope with human- induced stresses. The concept was developed by the UNESCO International Hydrologic Programme (IHP) and the Man and Biosphere Programme (MAB).
Resumo:
The North Atlantic intertidal community provides a rich set of organismal and environmental material for the study of ecological genetics. Clearly defined environmental gradients exist at multiple spatial scales: there are broad latitudinal trends in temperature, meso-scale changes in salinity along estuaries, and smaller scale gradients in desiccation and temperature spanning the intertidal range. The geology and geography of the American and European coasts provide natural replication of these gradients, allowing for population genetic analyses of parallel adaptation to environmental stress and heterogeneity. Statistical methods have been developed that provide genomic neutrality tests of population differentiation and aid in the process of candidate gene identification. In this paper, we review studies of marine organisms that illustrate associations between an environmental gradient and specific genetic markers. Such highly differentiated markers become candidate genes for adaptation to the environmental factors in question, but the functional significance of genetic variants must be comprehensively evaluated. We present a set of predictions about locus-specific selection across latitudinal, estuarine, and intertidal gradients that are likely to exist in the North Atlantic. We further present new data and analyses that support and contradict these simple selection models. Some taxa show pronounced clinal variation at certain loci against a background of mild clinal variation at many loci. These cases illustrate the procedures necessary for distinguishing selection driven by internal genomic vs. external environmental factors. We suggest that the North Atlantic intertidal community provides a model system for identifying genes that matter in ecology due to the clarity of the environmental stresses and an extensive experimental literature on ecological function. While these organisms are typically poor genetic and genomic models, advances in comparative genomics have provided access to molecular tools that can now be applied to taxa with well-defined ecologies. As many of the organisms we discuss have tight physiological limits driven by climatic factors, this synthesis of molecular population genetics with marine ecology could provide a sensitive means of assessing evolutionary responses to climate change.
Resumo:
Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Tese de doutoramento, Biologia (Ecografia), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Senior thesis written for Oceanography 444
Resumo:
Tese de doutoramento, Geologia (Geoquímica), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Tese de doutoramento, Geologia (Geologia Económica e do Ambiente), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Tese de mestrado em Ecologia Marinha, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015