998 resultados para Espalhamento - Raman
Resumo:
The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.
Resumo:
A sandwich structure consisting of Ag nanoparticles (NPs), p-aminothiophenol (p-ATP) self-assembled monolayers (SAMs), and Ag NPs was fabricated on glass and characterized by surface enhanced Raman scattering (SERS). The SERS spectrum of a p-ATP SAM in such sandwich structure shows that the electromagnetic enhancement is greater than that on Ag NPs assembled on glass. The obtained enhancement factors (EF) on solely one sandwich structure were as large as 6.0 +/- 0.62x10(4) and 1.2 +/- 0.62x10(7) for the 7a and 3b(b(2)) vibration modes, respectively. The large enhancement effect of p-ATP SAMs is likely a result of plasmon coupling between the two layers of Ag NP (localized surface plasmon) resonance, creating a large localized electromagnetic field at their interface, where p-ATP resides. Moreover, the fact that large EF values (similar to 1.9 +/- 0.7x10(4) and 9.4 +/- 0.7x10(6) for the 7a- and b(2)-type vibration modes, respectively) were also obtained on a single sandwich structure of Au NPs/p-ATP SAMs/Ag NPs in the visible demonstrates that the electromagnetic coupling does not exist only between Ag NPs but also between Au and Ag NPs.
Resumo:
Surface-enhanced Raman scattering (SERS) activity of silver-gold bimetallic nanostructures (a mean diameter of similar to 100 nm) with hollow interiors was checked using p-aminothiophenol (p-ATP) as a probe molecule at both visible light (514.5 nm) and near-infrared (1064 nm) excitation. Evident Raman peaks of p-ATP were clearly observed, indicating the enhancement Raman scattering activity of the hollow nanostructure to p-ATP. The enhancement factors (EF) at the hollow nanostructures were obtained to be as large as (0.8 +/- 0.3)x10(6) and (2.7 +/- 0.5)x10(8) for 7a and 19b (b(2)) vibration mode, respectively, which was 30-40 times larger than that at silver nanoparticles with solid interiors at 514.5 nm excitation. EF values were also obtained at 1064 nm excitation for 7a and b(2)-type vibration mode, which were estimated to be as large as (1.0 +/- 0.3)x10(6) and (0.9 +/- 0.2)x10(7), respectively. The additional EF values by a factor of similar to 10 for b(2)-type band were assumed to be due to the chemical effect. Large electromagnetic EF values were presumed to derive from a strong localized plasmas electromagnetic field existed at the hollow nanostructures.
Resumo:
We report an easy synthesis of highly branched gold particles through a seed-mediated growth approach in the presence of citrate. The addition of citrate in the growth solution is found to be crucial for the formation of these branched gold particles. Their size can be varied from 47 to 185 nm. The length of the thumb-like branch is estimated to be between about 5 and 20 nm, and changes slightly as the particle size increases. Owing to these obtuse and short branches, their surface plasmon resonance displays a marked red-shift with respect to the normal spherical particles. These branched gold particles exhibit stronger SERS activity than the non-branched ones, which is most likely related to these unique branching features.
Resumo:
This paper reports an aggregation-based method for the fabrication of composite Au/Ag nanoshells with tunable thickness and surface roughness. It is found that the resultant roughened composite Au/Ag nanoshells can attract each other spontaneously to form films at the air-water interface. Importantly, such films can be transferred onto the solid substrates without being destroyed and show excellent surface-enhanced Raman scattering (SERS) enhancement ability. Their strong enhancement ability may stem from the unique two-dimensional structure itself.
Resumo:
The conformation of microperoxidase-11 (MP-11) adsorbed on roughened silver electrodes was studied using surface-enhanced Fourier transform Raman spectroscopy. The results demonstrate that MP-11 was initially adsorbed via its polypeptide chain with a alpha-helix conformation, as indicated by the enhancement of the characteristic bands related to the amides I and III. The weak resonance effect of the porphyrin macrocycle in the near IR region contributes to the spectrum of the heme group. The presence of imidazole as the sixth ligand to the heme iron influences the conformation of the polypeptide chain of MP-11 on the electrode surface. Evaporation of solvent water results in an opened conformation of the adsorbed MP-11. which allows the heme group to contact the electrode surface directly.
Resumo:
Here, we describe a new method to study the biointeraction between Escherichia coli and mannose by using supramolecular assemblies composed of polydiacetylene supported on the self-assembled monolayer of octadecanethiol on a gold electrode. These prepared bilayer materials simply are an excellent protosystem to study a range of important sensor-related issues. The experimental results from UV-vis spectroscopy, resonance Raman spectroscopy, and electrochemistry confirm that the specific interactions between E. coli and mannose can cause conformational changes of the polydiacetylene backbone rather than simple nonspecific adsorption. Moreover, the direct electrochemical detection by polydiacetylene supramolecular assemblies not only opens a new path for the use of these membranes in the area of biosensor development but also offers new possibilities for diagnostic applications and screening for binding ligands.
Resumo:
The structural stability and redox properties of yeast iso-1-cytochrome c and its mutant, F82H, were studied by surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Phenylalanine, which exists at the position-82 in yeast iso-1-cytochrome c, is replaced by histidine in the mutant. The SERRS spectra of the proteins on the bare silver electrodes indicate that the mutant possesses a more stable global structure with regard to the adsorption-induced conformational alteration. The redox potential of the mutant negatively shifts by about 400 mV, relative to that of yeast iso-1-cytochrome c. This is ascribed to axial ligand switching and higher solvent accessibility of the heme iron in the mutant during the redox reactions.
Resumo:
The effect of rare-earth ion Eu3+ on hemoglobin (Hb) was studied by using two-dimensional Raman correlation spectroscopy. The results show that with the variation of Eu3+ concentrations as perturbation, the oxidation state of Hb and its spin state are both sensitive to the perturbation. Eu3+ added to Hb affects the oxidation and spin state synchronously. The four structure-sensitive bands of Hb are more accessible to the Eu3+ than other bands.
Resumo:
The spectroscopic characteristics of cytochrome c(WT) and its mutants(Y67F and N521) in the low frequency region were studied by Resonance Raman technique. The results show that the replacement of phenylalanine for Tyr 67 in WT had a very slight effect on the hydrogen-bonding and conformation of the amino acid residues around propionic acid side chains of heme group. However, large effects on the hydrogen-bonding of internal water with its surrounding amino acid residues and hydrophobility of the home cavity were observed as Asn 52 was substituted with isoleucine, which resulted in conformational regulations of home group and surrounding amino acid residues.
Resumo:
The effect of rare-earth ion Er3+ On myoglobin(Mb) was studied by using Resonance Raman spectroscopy. The results show that with the variation of Er3+ concentrations, both the oxidation state and spin state of Mb are sensitive to the perturbation of Er3+. Er3+ added to Mb affects the oxidation and spin state synchronously. The structure-sensitive groups of Mb are more accessible to the Er3+ than other groups. According to the fluorometry and CD spectra studied and our results as mentioned above, we considered that Er3+ does not interact with heme directly, and Er3+ probably leads to the conformational changes of Mb due to the change of oxidation and spin state of Heme.
Resumo:
The electron transfer and structure of microperoxidase-11(MP-11) in solution and at electrode/solution interface were studied by electrochemical, resonance Raman and surface-enhanced Raman spectroscopic techniques. Results show that the central iron in heme group was six-coordinated in solution, whereas it was converted to five-coordinated state as MP-11 was adsorbed on the surface of a roughened silver electrode, due to the reorientation of MP-11 molecules. The electrochemical properties of MP-11 were directly affected by the coordination state of heme iron.
Circular dichroism and resonance Raman comparative studies of wild type cytochrome c and F82H mutant
Resumo:
The UV-visible, circular dichroism (CD), and resonance Raman (RR) spectra of the wild type yeast iso-1-cytochrome c (WT) and its mutant F82H in which phenylalanine-82 (Phe-82) is substituted with His are measured and compared for oxidized and reduced forms. The CD spectra in the intrinsic and Soret spectral region, as well as RR spectra in high, middle, and low frequency regions, are discussed. From the analysis of the spectra, it is determined that in the oxidized F82H the two axial ligands to the heme iron are His-18 and His-82 whereas in the reduced form the sixth ligand switches from His-82 to Met-80 providing the coordination geometry similar to that of WT. Based on the spectroscopic data, the conclusion is that the porphyrin macrocycle is less distorted in the oxidized F82H compared to the oxidized WT. Similar distortions are present in the reduced form of the proteins. Frequency shifts of Raman bands, as well as the decrease of the or-helix content in the CD spectra, indicate more open conformation of the protein around the heme. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The interaction of scopolamine and cholesterol with sphingomyelin bilayers has been investigated by FT-Raman spectroscopy in head-group region (600-1000 cm(-1)), the C-C stretching (1000-1200 cm(-1)), CH2 deformation (1400-1500 cm(-1)) and the C-H stretching (2800-3000 cm(-1)) mode regions. The results indicate that scopolamine and cholesterol do not change the conformation of O-C-C-N+ backbone in the choline group of sphingomyelin bilayers, the polar headgroup is still extending parallel to the bilayer surface and O-C-C-N+ group is still in its gauche conformer. Scopolamine and cholesterol lower the order of the interface, the interchain, CH2 crystal lattices and the lateral chain-chain packing, and increase their fluidity.
Resumo:
本文用FT-Raman光谱研究了东莨菪碱和神经鞘磷脂的相互作用。研究结果表明,东莨菪碱对鞘磷脂极性头部的构象没有影响,降低鞘磷脂交界面,脂肪酸链,CH2晶格及脂肪酸链链间的有序性,增大其流动性。