912 resultados para Error Correction Models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of airborne laser scanning (ALS) technologies in forest inventories has shown great potential to improve the efficiency of forest planning activities. Precise estimates, fast assessment and relatively low complexity can explain the good results in terms of efficiency. The evolution of GPS and inertial measurement technologies, as well as the observed lower assessment costs when these technologies are applied to large scale studies, can explain the increasing dissemination of ALS technologies. The observed good quality of results can be expressed by estimates of volumes and basal area with estimated error below the level of 8.4%, depending on the size of sampled area, the quantity of laser pulses per square meter and the number of control plots. This paper analyzes the potential of an ALS assessment to produce certain forest inventory statistics in plantations of cloned Eucalyptus spp with precision equal of superior to conventional methods. The statistics of interest in this case were: volume, basal area, mean height and dominant trees mean height. The ALS flight for data assessment covered two strips of approximately 2 by 20 Km, in which clouds of points were sampled in circular plots with a radius of 13 m. Plots were sampled in different parts of the strips to cover different stand ages. The clouds of points generated by the ALS assessment: overall height mean, standard error, five percentiles (height under which we can find 10%, 30%, 50%,70% and 90% of the ALS points above ground level in the cloud), and density of points above ground level in each percentile were calculated. The ALS statistics were used in regression models to estimate mean diameter, mean height, mean height of dominant trees, basal area and volume. Conventional forest inventory sample plots provided real data. For volume, an exploratory assessment involving different combinations of ALS statistics allowed for the definition of the most promising relationships and fitting tests based on well known forest biometric models. The models based on ALS statistics that produced the best results involved: the 30% percentile to estimate mean diameter (R(2)=0,88 and MQE%=0,0004); the 10% and 90% percentiles to estimate mean height (R(2)=0,94 and MQE%=0,0003); the 90% percentile to estimate dominant height (R(2)=0,96 and MQE%=0,0003); the 10% percentile and mean height of ALS points to estimate basal area (R(2)=0,92 and MQE%=0,0016); and, to estimate volume, age and the 30% and 90% percentiles (R(2)=0,95 MQE%=0,002). Among the tested forest biometric models, the best fits were provided by the modified Schumacher using age and the 90% percentile, modified Clutter using age, mean height of ALS points and the 70% percentile, and modified Buckman using age, mean height of ALS points and the 10% percentile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capybaras were monitored weekly from 1998 to 2006 by counting individuals in three anthropogenic environments (mixed agricultural fields, forest and open areas) of southeastern Brazil in order to examine the possible influence of environmental variables (temperature, humidity, wind speed, precipitation and global radiation) on the detectability of this species. There was consistent seasonality in the number of capybaras in the study area, with a specific seasonal pattern in each area. Log-linear models were fitted to the sample counts of adult capybaras separately for each sampled area, with an allowance for monthly effects, time trends and the effects of environmental variables. Log-linear models containing effects for the months of the year and a quartic time trend were highly significant. The effects of environmental variables on sample counts were different in each type of environment. As environmental variables affect capybara detectability, they should be considered in future species survey/monitoring programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrological models featuring root water uptake usually do not include compensation mechanisms such that reductions in uptake from dry layers are compensated by an increase in uptake from wetter layers. We developed a physically based root water uptake model with an implicit compensation mechanism. Based on an expression for the matric flux potential (M) as a function of the distance to the root, and assuming a depth-independent value of M at the root surface, uptake per layer is shown to be a function of layer bulk M, root surface M, and a weighting factor that depends on root length density and root radius. Actual transpiration can be calculated from the sum of layer uptake rates. The proposed reduction function (PRF) was built into the SWAP model, and predictions were compared to those made with the Feddes reduction function (FRF). Simulation results were tested against data from Canada (continuous spring wheat [(Triticum aestivum L.]) and Germany (spring wheat, winter barley [Hordeum vulgare L.], sugarbeet [Beta vulgaris L.], winter wheat rotation). For the Canadian data, the root mean square error of prediction (RMSEP) for water content in the upper soil layers was very similar for FRF and PRF; for the deeper layers, RMSEP was smaller for PRF. For the German data, RMSEP was lower for PRF in the upper layers and was similar for both models in the deeper layers. In conclusion, but dependent on the properties of the data sets available for testing,the incorporation of the new reduction function into SWAP was successful, providing new capabilities for simulating compensated root water uptake without increasing the number of input parameters or degrading model performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The van Genuchten expressions for the unsaturated soil hydraulic properties, first published in 1980, are used frequently in various vadose zone flow and transport applications assuming a specific relationship between the m and n soil hydraulic parameters. By comparison, probably because of the complexity of the hydraulic conductivity equations, the more general solutions with independent m and n values are rarely used. We expressed the general van Genuchten-Mualem and van Genuchten-Burdine hydraulic conductivity equations in terms of hypergeometric functions, which can be approximated by infinite series that converge rapidly for relatively large values of the van Genuchten-Mualem parameter n but only very slowly when n is close to one. Alternative equations were derived that provide very close approximations of the analytical results. The newly proposed equations allow the use of independent values of the parameters m and n in the soil water retention model of van Genuchten for subsequent prediction of the van Genuchten-Mualem and van Genuchten-Burdine hydraulic conductivity models, thus providing more flexibility in fitting experimental pressure-head-dependent water content, theta(h), and hydraulic conductivity, K(h), or K(theta) data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article analysed scenarios for Brazilian consumption of ethanol for the period 2006 to 2012. The results show that if the country`s GDP sustains a 4.6% a year growth, domestic consumption of fuel ethanol could increase to 25.16 billion liters in this period, which is a volume relatively close to the forecasted gasoline consumption of 31 billion liters. At a lower GDP growth of 1.22% a year, gasoline consumption would be reduced and domestic ethanol consumption in Brazil would be no higher than 18.32 billion liters. Contrary to the current situation, forecasts indicated that hydrated ethanol consumption could become much higher than anhydrous consumption in Brazil. The former is being consumed in cars moved exclusively by ethanol and flex-fuel cars, successfully introduced in the country at 2003. Flex cars allow Brazilian consumers to choose between gasoline and hydrated ethanol and immediately switch to whichever fuel presents the most favourable relative price.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Causal inference methods - mainly path analysis and structural equation modeling - offer plant physiologists information about cause-and-effect relationships among plant traits. Recently, an unusual approach to causal inference through stepwise variable selection has been proposed and used in various works on plant physiology. The approach should not be considered correct from a biological point of view. Here, it is explained why stepwise variable selection should not be used for causal inference, and shown what strange conclusions can be drawn based upon the former analysis when one aims to interpret cause-and-effect relationships among plant traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 152,145 weekly test-day milk yield records from 7317 first lactations of Holstein cows distributed in 93 herds in southeastern Brazil were analyzed. Test-day milk yields were classified into 44 weekly classes of DIM. The contemporary groups were defined as herd-year-week of test-day. The model included direct additive genetic, permanent environmental and residual effects as random and fixed effects of contemporary group and age of cow at calving as covariable, linear and quadratic effects. Mean trends were modeled by a cubic regression on orthogonal polynomials of DIM. Additive genetic and permanent environmental random effects were estimated by random regression on orthogonal Legendre polynomials. Residual variances were modeled using third to seventh-order variance functions or a step function with 1, 6,13,17 and 44 variance classes. Results from Akaike`s and Schwarz`s Bayesian information criterion suggested that a model considering a 7th-order Legendre polynomial for additive effect, a 12th-order polynomial for permanent environment effect and a step function with 6 classes for residual variances, fitted best. However, a parsimonious model, with a 6th-order Legendre polynomial for additive effects and a 7th-order polynomial for permanent environmental effects, yielded very similar genetic parameter estimates. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) were evaluated for the total phenolics, antioxidant capacity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. The total phenolics content ranged from 3.2 (green gooseberries) to 13.5 (black currants) mg/g fruit fresh weight. No correlation was found between total phenolics and antioxidant activity. The major phenolic compounds were quercetin derivatives (black currants and green gooseberries) and chlorogenic acid (red currants and red gooseberries). Red currants had the highest alpha-glucosidase, alpha-amylase and ACE inhibitory activities. Therefore red currants could be good dietary sources with potential antidiabetes and antihypertension functionality to compliment overall dietary management of early stages of type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves from four different Ginkgo biloba L. trees (1 and 2 - females; 3 and 4 - males), grown at the same conditions, were collected during a period of 5 months (from June to October, 2007). Water and 12% ethanol extracts were analyzed for total phenolics content, antioxidant activity, phenolic profile, and the potential in vitro inhibitory effects on alpha-amylase, alpha-glucosidase, and Angiotensin I-Converting Enzyme (ACE) enzymes related to the management of diabetes and hypertension. The results indicated a significant difference among the trees in all functional benefits evaluated in the leaf extracts and also found important seasonal variation related to the same functional parameters. In general, the aqueous extracts had higher total phenolic content than the ethanolic extracts. Also, no correlation was found between total phenolics and antioxidant activity. In relation to the ACE inhibition, only ethanolic extracts had inhibitory activity. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fruits of seven fully ripened strawberry cultivars grown in Brazil (Dover, Camp Dover, Camarosa, Sweet Charlie, Toyonoka, Oso Grande, and Piedade) were evaluated for total phenolics, antioxidant activity based on DPPH radical scavenging assay, and functionality such as inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potentially managing hyperglycemia and hypertension. The total phenolics content ranged from 966 to 1571 mu g of gallic acid/g of fruit fresh weight for Toyonoka and Dover, respectively. No correlation was found between total phenolics and antioxidant activity. The major phenolic compounds in aqueous extracts of strawberries were ellagic acid, quercetin, and chlorogenic acid. Strawberries had high alpha-glucosidase inhibitory activity. However, alpha-amylase inhibitory activity was very low in all cultivars. This suggested that strawberries could be considered as a potential dietary source with anti-hyperglycemic potential. The evaluated cultivars had no significant ACE inhibitory activity, reflecting low anti-hypertensive potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to oxygen may induce a lack of functionality of probiotic dairy foods because the anaerobic metabolism of probiotic bacteria compromises during storage the maintenance of their viability to provide benefits to consumer health. Glucose oxidase can constitute a potential alternative to increase the survival of probiotic bacteria in yogurt because it consumes the oxygen permeating to the inside of the pot during storage, thus making it possible to avoid the use of chemical additives. This research aimed to optimize the processing of probiotic yogurt supplemented with glucose oxidase using response surface methodology and to determine the levels of glucose and glucose oxidase that minimize the concentration of dissolved oxygen and maximize the Bifidobacterium longum count by the desirability function. Response surface methodology mathematical models adequately described the process, with adjusted determination coefficients of 83% for the oxygen and 94% for the B. longum. Linear and quadratic effects of the glucose oxidase were reported for the oxygen model, whereas for the B. longum count model an influence of the glucose oxidase at the linear level was observed followed by the quadratic influence of glucose and quadratic effect of glucose oxidase. The desirability function indicated that 62.32 ppm of glucose oxidase and 4.35 ppm of glucose was the best combination of these components for optimization of probiotic yogurt processing. An additional validation experiment was performed and results showed acceptable error between the predicted and experimental results.