967 resultados para Energy intensity
Resumo:
The potential description of a quark-antiquark system seems to work very well in describing a number of hadronic properties. However, the precise form of the potential is unknown. The changes in the low-lying eigenvalues as a result of changes in the long-range part of the potential are investigated in a non-perturbative manner. It is shown by considering a variety of examples that the low-lying eigenvalues are insensitive to the long-range part of the potential.
Resumo:
This paper analyses the performance of particular wave-energy converter that uses the gyroscopic effects of a large rotating fly-wheel in combination with a controlled power-take-off device. Controlled gyroscopic forces have been used successfully in the past to reduce the motion of marine structures. With appropriately designed power-take-off elements, gyroscopic forces can be controlled to optimise the extracted energy from the motion of marine structures.
Resumo:
The work is a report of research on using multiple inverters of Battery Energy Storage Systems with angle droop controllers to share real power in an isolated micro grid system consisting of inertia based Distributed Generation units and variable load. The proposed angle droop control method helps to balance the supply and demand in the micro grid autonomous mode through charging and discharging of the Battery Energy Storage Systems while ensuring that the state of charge of the storage devices is within safe operating conditions. The proposed method is also studied for its effectiveness for frequency control. The proposed control system is verified and its performance validated with simulation software MATLAB/SIMULINK.
Resumo:
n this paper, the influence of patch parameters on stress intensity factors in edge cracked plates is studied by employing transmission photoelasticity. Edge cracked plates made of photo-elastic material are patched on one side only by E glass-epoxy and carbon-epoxy unidirectional composites. The patch is located on the crack in such a way that the crack tip is not covered. Magnified isochromatic fringes are obtained by using a projection microscope of magnification 50, converted into a polariscope. Irwin's method is used to compute stress intensity factors from photoelastic data. The reduction in stress intensity factors is presented in graphical form as a function of patch parameters, namely stiffness, location and length. An empirical equation connecting reduction in stress intensity factor and these patch parameters is presented.
Resumo:
A new method is suggested where the thermal activation energy is measured directly and not as a slope of an Arrhenius plot. The sample temperature T is allowed to fluctuate about a temperature T0. The reverse-biased sample diode is repeatedly pulsed towards zero bias and the transient capacitance C1 at time t1 is measured The activation energy is obtained by monitoring the fluctuations in C1 and T. The method has been used to measure the activation energy of the gold acceptor level in silicon.
Resumo:
The requirement of a suitable energy source during the induced synthesis of nitrate reductase in Image was investigated. The levels of nitrate reductase induced were shown to be energy-dependent, and to vary in response to the type of carbon source provided. Glycerol, fructose, ethanol, glucose, and sucrose served as efficient energy sources. Growth rate of the yeast and the induced level of nitrate reductase were dependent on the ratio of carbon to nitrogen in the induction medium, and ratio of 2 being optimal. Induction of nitrate reductase was inhibited by uncouplers, 2,4-dinitrophenol (DNP), dicumarol and carbonyl cyanide Candida-Utilis -trifluoromethoxy phenyl hydrazone (CCCP), and by cyanide and azide, indicating an absolute energy-dependency. The facilitation of induction of a high level of nitrate reductase by exogenously added ATP as sole source of energy confirmed the obligate requirement of ATP for the synthesis of nitrate reductase in Candida-Utilis.
Resumo:
This article contributes an original integrated model of an open-pit coal mine for supporting energy-efficient decisions. Mixed integer linear programming is used to formulate a general integrated model of the operational energy consumption of four common open-pit coal mining subsystems: excavation and haulage, stockpiles, processing plants and belt conveyors. Mines are represented as connected instances of the four subsystems, in a flow sheet manner, which are then fitted to data provided by the mine operators. Solving the integrated model ensures the subsystems’ operations are synchronised and whole-of-mine energy efficiency is encouraged. An investigation on a case study of an open-pit coal mine is conducted to validate the proposed methodology. Opportunities are presented for using the model to aid energy-efficient decision-making at various levels of a mine, and future work to improve the approach is described.
Resumo:
This paper is a condensed version of the final report of a detailed field study of rural energy consumption patterns in six villages located west of Bangalore in the dry belt of Karnataka State in India. The study was carried out in two phases; first, a pilot study of four villages and second, the detailed study of six villages, the populations of which varied from around 350 to about 950. The pilot survey ended in late 1976, and most of the data was collected for the main project in 1977. Processing of the collected data was completed in 1980. The aim was to carry out a census survey, rather than a sample study. Hence, considerable effort was expended in production of both a suitable questionnaire, ensuring that all respondents were contacted, and devising methods which would accurately reflect the actual energy use in various energy-utilising activities. In the end, 560 households out of 578 (97%) were surveyed. The following ranking was found for the various energy sources in order of average percentage contribution to the annual total energy requirement: firewood, 81·6%; human energy, 7·7%; animal energy, 2·7%; kerosene, 2·1%; electricity, 0·6% and all other sources (rice husks, agro-wastes, coal and diesel fuel), 5·3%. In other words commercial fuels made only a small contribution to the overall energy use. It should be noted that dung cakes are not burned in this region. The average energy use pattern, sector by sector, again on a percentage basis, was as follows: domestic, 88·3%; industry, 4·7%; agriculture, 4·3%; lighting, 2·2% and transport, 0·5%. The total annual per capita energy consumption was 12·6 ± 1·2 GJ, giving an average annual household consumption of around 78·6 GJ.
Resumo:
High-value fruit crops are exposed to a range of environmental conditions that can reduce fruit quality. Solar injury (SI) or sunburn is a common disorder in tropical, sub-tropical, and temperate climates and is related to: 1) high fruit surface temperature; 2) high visible light intensity; and, 3) ultraviolet radiation (UV). Positional changes in fruit that are caused by increased weight or abrupt changes that result from summer pruning, limb breakage, or other damage to the canopy can expose fruit to high solar radiation levels, increased fruit surface temperatures, and increased UV exposure that are higher than the conditions to which they are adapted. In our studies, we examined the effects of high fruit surface temperature, saturating photosynthetically-active radiation (PAR), and short-term UV exposure on chlorophyll fluorescence, respiration, and photosynthesis of fruit peel tissues from tropical and temperate fruit in a simulation of these acute environmental changes. All tropical fruits (citrus, macadamia, avocado, pineapple, and custard apple) and the apple cultivars 'Gala', 'Gold Rush', and 'Granny Smith' increased dark respiration (A0) when exposed to UV, suggesting that UV repair mechanisms were induced. The maximum quantum efficiency of photosystem II (Fv/Fm) and the quantum efficiency of photosystem II (ΦII) were unaffected, indicating no adverse effects on photosystem II (PSII). In contrast, 'Braeburn' apple had a reduced Fv/Fm with no increase in A0 on all sampling dates. There was a consistent pattern in all studies. When Fv/Fm was unaffected by UV treatment, A0 increased significantly. Conversely, when Fv/Fm was reduced by UV treatment, then A0 was unaffected. The pattern suggests that when UV repair mechanisms are effective, PSII is adequately protected, and that this protection occurs at the cost of higher respiration. However, when the UV repair mechanisms are ineffective, not only is PSII damaged, but there is additional short-term damage to the repair mechanisms, indicated by a lack of respiration to provide energy.
Resumo:
A graphical method is presented for Hall data analysis, including the temperature variation of activation energy due to screening. This method removes the discrepancies noted in the analysis of recently reported Hall data on Si(In).
Resumo:
- Background This study examined relationships between adiposity, physical functioning and physical activity. - Methods Obese (N=107) and healthy-weight (N=132) children aged 10-13 years underwent assessments of percent body fat (%BF, dual energy X-ray absorptiometry), knee extensor strength (KE, isokinetic dynamometry), cardiorespiratory fitness (CRF, peak oxygen uptake by cycle ergometry), physical health-related quality of life (HRQOL), worst pain intensity and walking capacity [six-minute walk (6MWT)]. Structural equation modelling was used to assess relationships between variables. - Results Moderate relationships were observed between %BF and 6MWT, KE strength corrected for mass and CRF relative to mass (r -.36 to -.69, P≤.007). Weak relationships were found between: %BF and physical HRQOL (r -.27, P=.008); CRF relative to mass and physical HRQOL (r -.24, P=.003); physical activity and 6MWT (r .17, P=.004). Squared multiple correlations showed that 29.6% variance in physical HRQOL was explained by %BF, pain and CRF relative to mass, while 28% variance in 6MWT was explained by %BF and physical activity. - Conclusions It appears that children with a higher body fat percentage have poorer KE strength, CRF and overall physical functioning. Reducing percent fat appears to be the best target to improve functioning. However, a combined approach to intervention, targeting reductions in body fat percentage, pain and improvements in physical activity and CRF may assist physical functioning.
Resumo:
Cooking efficiency and related fuel economy issues have been studied in a particular rural area of India. Following a description of the cooking practices and conditions in this locale, cooking efficiency is examined. A cooking efficiency of only 6% was found. The use of aluminium rather than clay pots results in an increased efficiency. In addition, cooking efficiency correlates very well with specific fuel consumption. The latter parameter is much simpler to analyse than cooking efficiency. The energy losses during cooking are examined in the second part of this case study. The major energy losses are heating of excess air, heat carried away by the combustion products, heat transmitted to the stove body and floor, and the chemical energy in charcoal residue. The energy loss due to the evaporation of cooking water is also significant because it represents about one-third of the heat reaching the pots.
Resumo:
Para-Bose commutation relations are related to the SL(2,R) Lie algebra. The irreducible representation [script D]alpha of the para-Bose system is obtained as the direct sum Dbeta[direct-sum]Dbeta+1/2 of the representations of the SL(2,R) Lie algebra. The position and momentum eigenstates are then obtained in this representation [script D]alpha, using the matrix mechanical method. The orthogonality, completeness, and the overlap of these eigenstates are derived. The momentum eigenstates are also derived using the wave mechanical method by specifying the domain of the definition of the momentum operator in addition to giving it a formal differential expression. By a careful consideration in this manner we find that the two apparently different solutions obtained by Ohnuki and Kamefuchi in this context are actually unitarily equivalent. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Tick fever is an important disease of cattle where Rhipicephalus (Boophilus) microplus acts as a vector for the three causal organisms Babesia bovis, Babesia bigemina and Anaplasma marginale. Bos indicus cattle and their crosses are more resistant to the clinical effects of infection with B. bovis and B. bigemina than are Bos taurus cattle. Resistance is not complete, however, and herds of B. indicus-cross cattle are still at risk of babesiosis in environments where exposure to B. bovis is light in most years but occasionally high. The susceptibility of B. indicus cattle and their crosses to infection with A. marginale is similar to that of B. taurus cattle. In herds of B. indicus cattle and their crosses the infection rate of Babesia spp. and A. marginale is lowered because fewer ticks are likely to attach per day due to reduced numbers of ticks in the field (long-term effect on population, arising from high host resistance) and because a smaller proportion of ticks that do develop to feed on infected cattle will in turn be infected (due to lower parasitaemia). As a consequence, herds of B. indicus cattle are less likely than herds of B. taurus cattle to have high levels of population immunity to babesiosis or anaplasmosis. The effects of acaricide application on the probability of clinical disease due to anaplasmosis and babesiosis are unpredictable and dependent on the prevalence of infection in ticks and in cattle at the time of application. Attempting to manipulate population immunity through the toleration of specific threshold numbers of ticks with the aim of controlling tick fever is not reliable and the justification for acaricide application should be for the control of ticks rather than for tick fever. Vaccination of B. indicus cattle and their crosses is advisable in all areas where ticks exist, although vaccination against B. bigemina is probably not essential in pure B. indicus animals.
Resumo:
The basic cyclic hexapeptide conformations which accommodate hydrogen bonded β and γ turns in the backbone have been worked out using stereochemical criteria and energy minimization procedures. It was found that cyclic hexapeptides can be made up of all possible combinations of 4 ± 1 hydrogen bonded types I, I', II and II' β turns, giving rise to symmetric conformations having twofold and inversion symmetries as well as nonsymmetric structures. Conformations having exclusive features of 3 ± 1 hydrogen bonded γ turns were found to be possible in threefold and S6 symmetric cyclic hexapeptides. The results show that the cyclic hexapeptides formed by the linking of two β turn tripeptide fragments differ mainly in (a) the hydrogen bonding scheme present in the β turn tripeptides and (b) the conformation at the α-carbon atoms where the two tripeptide fragments link. The different hydrogen bonding schemes found in the component β turns are: 1) a β turn with only a 4 ± 1 hydrogen bond, 2) a type I or I' β turn with 4 ± 1 and 3 ± 1 hydrogen bonds occurring in a bifurcated form and 3) a type II or II' β turn having both the 4 ± 1 and the 3 ± 1 hydrogen bonds with the same acceptor oxygen atom. The conformation at the linking α-carbon atoms was found to lie either in the extended region or in the 3 ± 1 hydrogen bonded γ turn or inverse γ turn regions. Further, the threefold and the S6 symmetric conformations have three γ turns interleaved by three extended regions or three inverse γ turns, respectively. The feasibility of accommodating alanyl residues of both isomeric forms in the CHP minima has been explored. Finally, the available experimental data are reviewed in the light of the present results.