969 resultados para Energy expression
Resumo:
Recent discussions of energy security and climate change have attracted significant attention to clean energy. We hypothesize that rising prices of conventional energy and/or placement of a price on carbon emissions would encourage investments in clean energy firms. The data from three clean energy indices show that oil prices and technology stock prices separately affect the stock prices of clean energy firms. However, the data fail to demonstrate a significant relationship between carbon prices and the stock prices of the firms.
Resumo:
The project evaluated potential of soluble cellulose as a cheap feed ingredient for major farmed Australian freshwater crayfish species testing their growth performance, digestive enzyme activity and digestive enzyme gene expression patterns. Test animals showed an innate capacity to utilise a range of carbohydrate sources including complex structural polysaccharides. Results suggest that more plant-derived ingredient can be incorporated in formulated low-cost feeds for the culture industry.
Resumo:
Considerable discussion has taken place during the last decade regarding the role of economic growth in determining environmental quality. Using data from 30 OECD countries for the period 1960-2003 and the nonparametric method of generalized additive models, which enables us to use flexible functional forms, this paper examines the environmental Kuznets curve hypothesis for carbon dioxide (CO2). We find that the reduction of coal share in energy use has a significant effect on CO2. Our results imply that economic growth is not sufficient to decrease CO2 emissions.
Resumo:
In this paper, we distinguish between factor/output substitution and shifts in the production technology frontier. Our model includes the by-products of carbon dioxide and sulfur dioxide emissions where the function requires the simultaneous expansion of good outputs and reductions in emissions. We estimate a directional output distance function for 80 countries over the period 1971-2000 to measure the exogenous and oil price-induced technological change. On average, we find substantial oil price-induced technological progress at the world level when long-term oil prices are rising, although the growth rate is more volatile in developed countries than in developing countries. The results also show that developed countries experience higher exogenous technological progress in comparison with developing countries, and the gap between the two has increased during the period of our study.
Resumo:
This paper explores a new breed of energy storage system interfacing for grid connected photovoltaic (PV) systems. The proposed system uses the popular dual inverter topology in which one inverter is supplied by a PV cell array and the other by a Battery Energy Storage System (BESS). The resulting conversion structure is controlled in a way that both demand matching and maximum power point tracking of the PV cell array are performed simultaneously. This dual inverter topology can produces 2, 3, 4 and 5 level inverter voltage waveforms at the dc-link voltage ratios of 0:1, 1:1, 2:1 and 3:2 respectively. Since the output voltage of the PV cell array and the battery are uncorrelated and dynamically change, the resulting dc-link voltage ratio can take non-integer values as well. These noninteger dc-link voltage ratios produce unevenly distributed space vectors. Therefore, the main issue with the proposed system is the generation of undistorted current even in the presence of unevenly distributed and dynamically changing space vectors. A modified space vector modulation method is proposed in this paper to address this issue and its efficacy is proved by simulation results. The ability of the proposed system to act as an active power source is also verified.
Resumo:
This paper presents a new direct integration scheme for supercapacitors that are used to mitigate short term power fluctuations in wind power systems. The proposed scheme uses the popular dual inverter topology for grid connection as well as interfacing a supercapacitor bank. The dual inverter system is formed by cascading two 2-level inverters named as the “main inverter” and the “auxiliary inverter”. The main inverter is powered by the rectified output of a wind turbine coupled permanent magnet synchronous generator. The auxiliary inverter is directly connected to a super capacitor bank. This approach eliminates the need for an interfacing dc-dc converter for the supercapacitor bank and thus improves the overall efficiency. A detailed analysis on the effects of non-integer dynamically changing voltage ratio is presented. The concept of integrated boost rectifier is used to carry out the Maximum Power Point Tracking (MPPT) of the wind turbine generator. Another novel feature of this paper is the power reference adjuster which effectively manages capacitor charging and discharging at extreme conditions. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.
Resumo:
An overview is given of the various energy storage technologies which can be used in distributed generation (DG) schemes. Description of the recent photovoltaic DG initiative in Singapore is included, in which several of the storage systems can find ready applications. Schemes pertaining to the use of solid oxide fuel cell for power quality enhancement and battery energy storage system used in conjunction with wind power generation are also described.
Resumo:
This study explores the idea of video games where the players are not just allowed to express themselves creatively, but are challenged to do so and are judged based on the quality of their creative expression. The outcome of the research is a series of six games which comment on this idea. The study also raises further questions regarding how current video games are constructed and designed in comparison with non-computer games, and invites a further evolution of the craft of video game design in a direction that focuses more on interpreting and reacting to what the player is doing.
Resumo:
This was a comparative study of the possibility of a net zero energy house in Queensland, Australia. It examines the actual energy use and thermal comfort conditions of an occupied Brisbane home and compares performance with the 10 star scale rating scheme for Australian residential buildings. An adaptive comfort psychometric chart was developed for this analysis. The house's capacity for the use of the natural ventilation was studied by CFD modelling. This study showed that the house succeeded in achieving the definition of net zero energy on an annual and monthly basis for lighting, cooking and space heating / cooling and for 70% of days for lighting, hot water and cooking services.
Resumo:
Large number of rooftop Photovoltaics (PVs) have turned traditional passive networks into active networks with intermittent and bidirectional power flow. A community based distribution network grid reinforcement process is proposed to address technical challenges associated with large integration of rooftop PVs. Probabilistic estimation of intermittent PV generation is considered. Depending on the network parameters such as the R/X ratio of distribution feeder, either reactive control from PVs or coordinated control of PVs and Battery Energy Storage (BES) has been proposed. Determination of BES capacity is one of the significant outcomes from the proposed method and several factors such as variation in PV installed capacity as well as participation from community members are analyzed. The proposed approach is convenient for the community members providing them flexibility of managing their integrated PV and BES systems
Resumo:
The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. We determined, in young men (n=8) and women (n=7), protein signaling, resting post-absorptive MPS during energy balance [EB: 45 kcal∙(kg FFM∙d)-1] and after 5d of ED [30 kcal∙(kg FFM∙d)-1] as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Post-absorptive rates of MPS were 27% lower in ED than EB (P<0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ~16 and ~34% above resting EB, (P<0.02). p70 S6Kthr389 phosphorylation increased above EB only with combined exercise and protein intake (~2-7 fold; P<0.05). In conclusion, short-term ED reduces post-absorptive MPS, however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short term ED and could, in the long term, preserve muscle mass.
Resumo:
Transcription is a fundamental step in gene expression, yet it remains poorly understood at a cellular level. Visualization of transcription sites and active genes has led to the suggestion that transcription occurs at discrete sites in the nucleus, termed transcription factories, where multiple active RNA polymerases are concentrated and anchored to a nuclear substructure. However, this concept is not universally accepted. This Review discusses the experimental evidence in support of the transcription factory model and the evidence that argues against such a spatially structured view of transcription. The transcription factory model has implications for the regulation of transcription initiation and elongation, for the organization of genes in the genome, for the co-regulation of genes and for genome instability.
Resumo:
This paper critically examines research on consumer attitudes and behavior towards solar photovoltaic (PV) and renewable energy technology in Australia. The uptake of renewable energy technology by residential consumers in Australia in the past decade has transformed the electricity supply and demand paradigm. Thus, this paper reviews Australian research on consumer behavior, understanding and choices in order to identify gaps in knowledge. As the role of the consumer transforms there is a critical need to understand the ways consumers may respond to future energy policies to mitigate unforeseen negative social and economic consequence of programs designed to achieve positive environmental outcomes.
Resumo:
Thraustochytrids have become of considerable industrial and scientific interest in the past decade due to their health benefits. They have been proven to be the principle source in marine and estuarine fish diets with high percentage of long chain (LC) or polyunsaturated fatty acids (PUFA). Therefore, the oil extracted from fish for human document.forms[0].elements[13].select();consumption is rich in PUFA with high omega-3 fatty acid content. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of all of the omega-3 fatty acids, are considered beneficial essential oils for humans with a wide range of health benefits. These include brain and neural development in infants, general wellbeing of adults and drug delivery through precursor molecules. They have become one of the most extensively studied organisms for industrial oil preparations as PUFA extraction from fish becomes less profitable. Many forms of these Thraustochytrid oils are being trialled for human consumption all over the world. In Australia, there has been little research performed on these organisms in the past ten years. A few Australian studies have been conducted in the form of comparative studies related to PUFA production within the related genera, but not focussed on their identification or cellular and genomic characterisation. Therefore, the main aim of this study was to investigate the morphological and genetic characteristics of Australian Thraustochytrids in order to aid in their identification and characterisation, as well as to better understand the effect of environmental conditions in the regulation of PUFA production. It was also noted that there was a knowledge gap in the preservation and total genomic DNA extraction of these organisms for the purposes of scientific research. The cryopreservation of these organisms for studies around the world follows existing generic methods. However, it is well understood that many of these generic methods attract not only high costs for chemicals, but also uses considerable storage space and other resources, all of which can be improved with new or modified approaches. In this context, a simple and inexpensive bead preservation method is described, without compromising the storage shelf life. We also describe, for the first time, the effects of culture age on the successful cryopreservation of Thraustochytrids. It was evident in the literature that DNA and RNA extractions for molecular and genetic studies of Thraustochytrids follow the classical phenol-chloroform extraction methods. It was also observed that modern protocols failed to avoid the use of phenol-chloroform rather than improving preparation and cell disruption. In order to provide a high quantity and quality DNA extraction, a modified protocol has been introduced that employs the use of modern commercial extraction kits and standard laboratory equipment. Thraustochytrids have been shown to be highly conserved in their 18S rDNA gene sequences, which is used as the current standard for identification. It was demonstrated that the 18S rDNA gene sequence limits the recognition of closely related genera or within the genera from each member. Therefore, it was proposed that another profile, such as a randomly amplified polymorphic DNA (RAPD) based profiling system, be tested for use in the characterisation of Thraustochytrids. The RAPD profiles were shown to provide a unique DNA fingerprint for each isolate and small variations in their genome were able to be detected. This method involved the use of a minimum number of standard arbitrary primers and with an increase in the number of different primers used, a very high discrimination between organisms could be achieved. However, the method was not suitable for taxonomic purposes because the results did not correlate with other taxonomic features such as morphology. Another knowledge gap was found with respect to Australian Thraustochytrid growth characteristics, in that these had not been recorded and published. In order to rectify this, a record of colony and microscopic features of 12 selected isolates was performed. The results of preliminary studies indicated that further microbiological and biochemical studies are needed for full characterisation of these organisms. This information is of great importance to bio-prospecting of new Thraustochytrids from Australian ecosystems and would allow for their accurate identification, and so permit the prediction of their PUFA capability by comparison with related genera/species. It was well recognized that environmental stress plays a role in the PUFA production and is mainly due to the reactive oxygen species as abiotic stress (Chiou et al., 2001; Okuyama et al., 2008; Shabala et al., 2009; Shabala et al., 2001). In this aspect, this study makes the first attempt towards better understanding of this phenomenon by way of the use of real-time PCR for the detection of environmental effects on the regulation of PUFA production. Three main environmental conditions including temperature, pH and oxygen availability were monitored as stress inducers. In summary, this study provides novel approaches for the preservation and handling of Thraustochytrids, their molecular biological features, taxonomy, characterisation and responses to environmental factors with respect to their oil production enzymes. The information produced from this study will prove to be vital for both industrial and scientific investigations in the future.
Resumo:
The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.