930 resultados para Energetic
Resumo:
O equino é um herbívoro não ruminante capaz de suprir grande parte ou a totalidade da sua demanda nutricional pela ingestão de gramíneas. Apresenta a região ceco-cólica bastante desenvolvida, sendo este o principal sítio de fermentação. Este processo também ocorre na região aglandular do estômago, porém a produção de ácidos graxos voláteis é inferior, quando comparado ao intestino grosso. O conhecimento do sítio de aproveitamento de cada ingrediente é de suma importância para a combinação dos mesmos, favorecendo o ótimo aproveitamento de cada um deles e evitando excessos que podem ser prejudiciais ao metabolismo do equino. O estudo atual do fracionamento de carboidratos, por mais que não seja adaptado a fisiologia e metabolismo dos equinos, nos fornece informações sobre as diferentes frações que o compõem e com isso pode-se inferir sobre a produção de energia por cada fração gerada. A manutenção de equinos em pastejo ou sob o fornecimento de feno ou alimentos volumosos é essencial para a manutenção da atividade e saúde do seu trato digestório. O aporte mínimo de 12% de FDN garante tal situação. Atualmente, com o objetivo de aumentar a disponibilidade de energia, ingredientes como a polpa cítrica, polpa de beterraba e casca de soja, vem sendo utilizados nas formulações. Estes ingredientes de fermentação mais rápida e fácil, são uma alternativa segura para elevar a concentração energética da dieta de equinos, por proporcionar a diminuição do aporte de amido na dieta de equinos. Sabe-se entretanto, que com a elevação na qualidade do volumoso, maiores concentrações de carboidratos solúveis e de rápida fermentação são encontrados disponíveis ao longo do trato digestório dos equinos levando a alguns distúrbios metabólicos como a laminite e a sensibilidade a insulina. Com o correto manejo dos animais em pastejo e conhecimento do ciclo da planta é possível minimizar tais problemas. Objetivou-se revisão da ação fisiológica e metabólica das diferentes frações fibrosas, em cada compartimento do trato digestório, bem como destacar os ingredientes volumosos com suas diversas frações, os quais possibilitam sugerir manejo alimentar adequado para os equinos.
Resumo:
Com o objetivo de verificar o efeito da adição de níveis crescentes de óleo no concentrado sobre a atividade plasmática das enzimas creatina quinase (CK), aspartato aminotransferase (AST) e lactato desidrogenase (LDH) como indicativo de metabolismo energético, foram fornecidas dietas experimentais compostas de cinco níveis de óleo (controle, 6, 12, 18 e 24% do concentrado). Utilizaram-se 20 equinos da raça Árabe, peso médio de 400 kg, submetidos a prova de enduro de 80 km em esteira rolante. O enduro foi dividido em quatro anéis de 20 km, com duração média de 1 hora e dez minutos. A adição de óleo e a distância percorrida tiveram efeitos sobre as variáveis AST, CK e LDH, que apresentaram as respectivas expressões: AST (7,045-0,2292x+0,007991x2+0,008517z- 0,0003282xz), CK (8,06-,07020x+0,05546x2-0,001262x3+0,01204z+0,0006207xz) e LDH (6,624-0,3522x+0,03448x2-0,0008382x3+0,02401z-0,0007489xz) . O óleo é uma importante e bem aproveitada fonte de energia para equinos em exercício, pois sua adição na dieta de animais submetidos a prova de enduro promoveu alteração metabólica que favorece a produção de energia. O metabolismo animal poupou suas reservas energéticas oriundas da glicose, favorecendo a utilização do óleo. A menor atividade plasmática das enzimas AST, CK e LDH com a adição de óleo nas dietas indica direcionamento do metabolismo energético para a β-oxidação. Como apresentam várias isoenzimas, as enzimas estudadas atuam amplamente no metabolismo energético, favorecendo a constante reposição de ATP ao longo do exercício.
Resumo:
O experimento foi conduzido com o objetivo de avaliar o desempenho reprodutivo e zootécnico e a deposição de lipídios no tecido hepático de machos de tilápia-do-nilo alimentados com rações contendo diferentes níveis de energia digestível, obtidos com a inclusão de óleo de soja. Foram utilizados 400 reprodutores (300 fêmeas e 100 machos) distribuídos em delineamento inteiramente casualizado, composto de cinco níveis de energia digestível (2.700, 2.950, 3.200, 3.450 e 3.700 kcal.kg de ração-1) e quatro repetições. Os reprodutores foram alimentados com rações contendo 35% de proteína bruta e submetidos ao manejo reprodutivo em hapas por 101 dias. O melhor resultado de concentração espermática e percentual de espermatozoides normais foram obtidos para reprodutores alimentados com rações contendo 3.465,56 e 3.443,43 kcal. kg de ração-1, que produziram 7,98 × 10(9) espermatozoides.mL de sêmen-1 e 38,98% de espermatozoides normais, respectivamente. A produção de sêmen, o pH seminal, o índice de sobrevivência espermática e o tempo de ativação espermática não foram afetados pelos níveis energéticos das rações. Os níveis de energia das rações não influenciaram o desempenho zootécnico dos peixes, mas promoveram aumento linear na deposição de lipídios nos hepatócitos e afetaram a qualidade seminal, estimulando a produção de espermatozoides e a melhora dos índices de normalidade da morfologia espermática em níveis energéticos próximos a 3.450 kcal. kg de ração-1.
Resumo:
An experiment with 400 laying hens Hy Line with 26 weeks of age was conducted to compare the performance of laying hens fed during four cycles of 28 days with diets containing soybean meal (SM) plus soybean oil (SBM+oil), whole extruded soybean (ESB) and whole steam toasted soybean (TSB). A completely design randomized blocks was used, with 10 treatments and five replicates and eight laying hens in each experimental unit. The treatments consisted on the replacement of SBM per ESB and TSB at the levels 0, 25, 50, 75 and 100%; and as control the SBM with or without addition of oil. The results obtained showed that the hens were able to regulate the feed intake to maintain the energy intake only at lower energetic levels, however they tended to over intake energy with the increase of energy levels of the diets. The addition of oil or soybeans in the diets improved feed: gain ratio, however worsened the energy efficiency in relation to the diet without oil. The processing of soybean provided differences on the performance of laying hens and the ESB showed to be superior to TSB. The hens had higher use of the oil added to the soybean meal (SBM + oil) and ESB in relation to TSB. However, the values of AMEn obtained for the ESB were 12% higher, in average, to those determined for the SBM + oil and for the TSB.
Resumo:
Three pens of male broiler chicks were raised under standard conditions and fed from 7 to 42 days of age three isocaloric diets each with 15.8; 19.6 and 19.5% of CP; and 51, 51, and 44% of CHO; and 6.5; 3.0 and 7.7% of fat, and designated as the low protein (LowCP), low lipid (LowL) and low carbohydrate (LowCHO) diets, respectively. Body weights and feed intake were monitored weekly and blood samples were collected at the same time for posterior analysis of hormone and metabolite content. Chickens fed the LowCP diet were characterized by a reduced body weight gain and feed intake and poorer feed conversion efficiency compared to those fed the LowL and LowCHO diets, which were very similar in this respect. Plasma corticosterone and glucose levels and creatine kinase activity were not significantly changed by diet composition. LowCP chickens were characterised by the lowest plasma T-4 and uric acid levels (indicative for reduced protein breakdown and lower protein ingestion) but highest plasma triglyceride levels (congruent with their higher fat deposition) compared to the LowL and LowCHO chickens. LowL chickens had on average higher plasma T-3 and free fatty acid levels compared to the LowCP and LowCHO chickens.In conclusion, a limited substitution of carbohydrate for fat in iso-nitrogenous, iso-energetic diets has no pronounced effects on plasma hormone and metabolite levels, except for the elevation in T-3 (may enhance glucose uptake) and free fatty acid levels in the plasma of the chickens fed the LowL diet. The protein content of the diet has a greater impact on zootechnical performance, and underlying endocrine regulation of the intermediary metabolism compared to the dietary lipid and CHO fraction. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration, This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.
Resumo:
Logistic regression analysis was used to analyse sex allocation in a population of the leaf-cutting ant Acromyrmex balzani occurring in a pasture in southern Brazil. The field sample consisted of 151 fungus-garden chambers (18 queenright and 133 queenless), belonging to 50 nests with three vertically stacked chambers per nest on average. Taking nest chamber as the unit of analysis, seven predictor variables were considered: sampling date, chamber depth, chamber volume, weight of fungus garden, presence of a queen, number of large workers, and number of small to medium workers. The population-level numerical proportion of females was 0.548 and the inferred proportional energetic investment in females 0.672. The former was not significantly different from 0.5 (P=0.168), but the latter was (P=0.0003). The proportional investment in females per fungus garden increased with the number of large workers present (P=0.0002) and decreased with the dry weight of the fungus garden (P=0.012). This implies that resource acquisition through foraging is likely to be a major proximate determinant of sex allocation. The negative correlation between female bias and fungus garden weight might be due to developing adult females requiring more food than males, but this hypothesis could not be confirmed by direct statistical evidence.
Resumo:
The vertebrate predators of post-metamorphic anurans were quantified and the predator-prey relationship was investigated by analysing the relative size of invertebrate predators and anurans. More than 100 vertebrate predators were identified (in more than 200 reports) and classified as opportunistic, convenience, temporary specialized and specialized predators. Invertebrate predators were classified as solitary non-venomous, venomous and social foragers according to 333 reviewed reports. Each of these categories of invertebrate predators was compared with the relative size of the anurans, showing an increase in the relative size of the prey when predators used special predatory tactics. The number of species and the number of families of anurans that were preyed upon did not vary with the size of the predator, suggesting that prey selection was not arbitrary and that energetic constraints must be involved in this choice. The relatively low predation pressure upon brachycephalids was related to the presence of some defensive strategies of its species. This compounding review can be used as the foundation for future advances in vertebrate predator-prey interactions.
Resumo:
In this work it was performed energetic and exergetic analyses of three thermal plants to assessment a cogeneration system in expansion of a sugar-alcohol factory. The initial configuration considered is constituted by a low pressure steam generator, single stage steam turbines for electricity generation and crusher, shredder and mills with mechanical driving. In the intermediary configuration, the low pressure steam generator was substituted by another which generates steam at higher pressure and higher temperature, the steam turbines for electricity generation were substituted by a multiple stages extraction-condensation turbine and the other steam turbines were maintained. The final configuration consists in the substitution of these last turbines by electrical motors. Thermodynamic analyses were performed to evaluate the equipment and the overall plants efficiencies to permit a comparison among the plants. Besides of this, some important parameters of the sugar-alcohol factories were calculated.
Resumo:
In this work, thermodynamic and economic analyses are applied to a Brazilian thermal power plant operating with natural gas. The analyses are performed in two cases: the current configuration and the future configuration. The current configuration is constituted by four gas turbines which operate in open cycle. The future configuration is obtained by a plant repowering by addition of four recovery boilers, two steam turbines and others equipment and accessories necessary to operate in combined cycle. In order to obtain the performance parameters, energetic and exergetic analyses for each case considered are carried out. on the other hand, thermoeconomic analysis provides means to evaluate the influences of the capital and fuel costs in the composition of the electricity costs. Techniques of investment analysis are also applied to the new configuration and from the results obtained it is possible to verify the advantages of the modifications.
Resumo:
Glassy polymeric carbon (GPC) is a useful material for medical applications due to its chemical inertness and biocompatible characteristics. Mitral and aortic and hydrocephalic valves are examples of GPC prosthetic devices that have been fabricated and commercialized in Brazil. In this work, ion beam was used to improve the mechanical characteristics of GPC surface and therefore to avoid the propagation of microcracks where the cardiac valves are more fragile. A control group of phenolic resin samples heat-treated at 300, 400, 700, 1000, 1500, and 2500 degrees C was characterized by measuring their hardness and Young's reduced elastic modulus with the depth of indentation. The control group was compared to results obtained with samples heat-treated at 700, 1000, and 1500 degrees C and bombarded with energetic ions of silicon, carbon, oxygen, and gold at energies of 5, 6, 8, and 10 MeV, respectively, with fluences between 10x10(13) and 10x10(16) ions/cm(2). GPC nonbombarded samples showed that hardness depends on the heat treatment temperature (HTT), with a maximum hardness for heat treatment at 1000 degrees C. The comparison between the control group and bombarded group also showed that hardness, after bombardment, had a greater increase for samples prepared at 700 degrees C than for samples prepared at higher temperatures. The Young's elastic modulus presents an exponential relationship with depth. The parameters obtained by fitting depend on the HTT and on the ion used in the bombardment more than on energy and fluence. The hardness results show clearly that bombardment can promote carbonization, increase the linkage between the chains of the polymeric material, and promote recombination of broken bonds in lateral groups that are more numerous for samples heat-treated at 700 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Synthesis and self-assembly of nanomaterials can be controlled by the properties of soft matter. on one hand, dedicated nanoreactors such as reverse microemulsions or miniemulsions can be designed. on the other hand, direct shape control can be provided by the topology of liquid crystals that confine the reacting medium within a specific geometry. In the first case, the preparation of micro- or miniemulsions generally requires energetic mechanical stirring. The second approach uses thermodynamically stable systems, but it remains usually limited to binary (water + surfactant) systems. We report the preparation of different families of materials in highly ordered quaternary mediums that exhibit a liquid crystal structure with a high cell parameter. They were prepared with the proper ratios of salted water, nonpolar solvent, surfactant. and cosurfactants that form spontaneously swollen hexagonal phases. These swollen liquid crystals can be prepared from all classes of surfactants (cationic, anionic, and nonionic). They contain a regular network of parallel cylinders, whose diameters can be swollen with a nonpolar solvent, that are regularly spaced in a continuous aqueous salt solution. We demonstrate in the present report that both aqueous and organic phases can be used as nanoreactors for the preparation of materials. This property is illustrated by various examples such as the synthesis of platinum nanorods prepared in the aqueous phase or zirconia needles or the photo- or gamma-ray-induced polymerization of polydiacetylene in the organic phase. In all cases, materials can be easily extracted and their final shapes are directed by the structure-directing effect imposed by the liquid crystal.
Resumo:
The utilization of energetic and protein feeds, highly digestible as well, becomes more and more necessary due to the quality of formulated rations, fish performance and relationship with the environment. Apparent digestibility coefficient (ADC) of dry matter, protein, energy, phosphorus, and amino acids of corn starch, corn, wheat, rice, soybean, and cottonseed meal, corn gluten and fish meal were determined for Nile tilapia. ADC was determined using a reference diet based on albumin, gelatin and corn starch, was used inert indicator chromium III oxide (Cr(2)O(3)). Each test diet composed by 70% of reference diet and 30% of the test diet. Feces were collected using mofied Guelph system. ADC values for protein and average ADC of amino acids were as follows: corn 89.76 and 96.43%, rice meal 95.88 and 92.26%, wheat meal 93.54 and 84.41%, fish meal 82.59 and 86.36%, corn gluten 89.82 and 87.98%, soybean meal 94.13 and 91.93%, cotton meal 87.10 and 77.47%, respectively. According to the results of this work, ADC of protein is not a reliable indicator of ADC values of amino acids, even more so for wheat meal, corn, and cotton meal. Among protein feeds, soybean meal was found to have the highest ADC for protein and amino acids, while corn was the energetic feed with the highest ADC (86.15%) for energy.