867 resultados para Empirical studies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research is to examine the relative profitability of the firm within the nursing facility industry in Texas. An examination is made of the variables expected to affect profitability and of importance to the design and implementation of regulatory policy. To facilitate this inquiry, specific questions addressed are: (1) Do differences in ownership form affect profitability (defined as operating income before fixed costs)? (2) What impact does regional location have on profitability? (3) Do patient case-mix and access to care by Medicaid patients differ between proprietary and non-profit firms and facilities located in urban versus rural regions, and what association exists between these variables and profitability? (4) Are economies of scale present in the nursing home industry? (5) Do nursing facilities operate in a competitive output market characterized by the inability of a single firm to exhibit influence over market price?^ Prior studies have principally employed a cost function to assess efficiency differences between classifications of nursing facilities. The inherent weakness in this approach is that it only considers technical efficiency. Not both technical and price efficiency which are the two components of overall economic efficiency. One firm is more technically efficient compared to another if it is able to produce a given quantity of output at the least possible costs. Price efficiency means that scarce resources are being directed towards their most valued use. Assuming similar prices in both input and output markets, differences in overall economic efficiency between firm classes are assessed through profitability, hence a profit function.^ Using the framework of the profit function, data from 1990 Medicaid Costs Reports for Texas, and the analytic technique of Ordinary Least Squares Regression, the findings of the study indicated (1) similar profitability between nursing facilities organized as for-profit versus non-profit and located in urban versus rural regions, (2) an inverse association between both payor-mix and patient case-mix with profitability, (3) strong evidence for the presence of scale economies, and (4) existence of a competitive market structure. The paper concludes with implications regarding reimbursement methodology and construction moratorium policies in Texas. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the Web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research shows that well-educated citizens are more supportive of minority rights in direct democratic votes than people with less education. This article however suggests that educational effects on minority rights only emerge under certain conditions. A Bayesian multilevel analysis of 39 referendums and initiatives on minority rights in Switzerland (1981–2009) shows that educational effects are particularly strong when the rights of lesser-known cultural minorities are to be extended. They are entirely absent, however, when referenda address the curtailment of rights for well-known minority groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Integrated behavior therapy approaches are defined by the combination of behavioral and or cognitive interventions targeting neurocognition combined with other goal-oriented treatment targets such as social cognition, social skills, or educational issues. The Integrated Psychological Therapy Program (IPT) represents one of the very first behavior therapy approaches combining interventions of neurocognition, social cognition, and social competence. This comprehensive group-based bottom-up and top-down approach consists of five subprograms, each with incremental steps. IPT has been successfully implemented in several countries in Europe, America, Australia and in Asia. IPT worked as a model for some other approaches designed in the USA. IPT was undergone two further developments: based on the social competence part of IPT, the three specific therapy programs focusing residential, occupational or recreational topics were developed. Recently, the cognitive part of INT was rigorously expanded into the Integrated Neurocognitive Therapy (INT) designed exclusively for outpatient treatment: INT includes interventions targeting all neurocognitive and social cognitive domains defined by the NIMH-MATRICS initiative. These group and partially PC-based exercises are structured into four therapy modules, each starting with exercises on neurocognitive domains followed by social cognitive targets. Efficacy: The evidence of integrated therapy approaches and its advantage compared to of one-track interventions was becoming a discussion tool in therapy research as well as in mental health systems. Results of meta-analyses support superiority of integrated approaches compared to one-track interventions in more distal outcome areas such as social functioning. These results are in line with the large body of 37 independent IPT studies in 12 countries. Moreover, IPT research indicates the maintenance of therapy effects after the end of therapy and some evidence generalization effects. Additionally, the international randomized multi-center study on INT with 169 outpatients strongly supports the successful therapy of integrated therapy in proximal and distal outcome such as significant effects in cognition, functioning and negative symptoms. Clinical implication: therapy research as well as expert’s clinical experience recommends integrated therapy approaches such as IPT to be successful agents within multimodal psychiatric treatment concepts. Finally, integrated group therapy based on cognitive remediation seems to motivate and stimulate schizophrenia inpatients and outpatients to more successful and independent life also demanded by the recovery movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the prevalence of discontinuation and nonpublication of surgical versus medical randomized controlled trials (RCTs) and to explore risk factors for discontinuation and nonpublication of surgical RCTs. BACKGROUND: Trial discontinuation has significant scientific, ethical, and economic implications. To date, the prevalence of discontinuation of surgical RCTs is unknown. METHODS: All RCT protocols approved between 2000 and 2003 by 6 ethics committees in Canada, Germany, and Switzerland were screened. Baseline characteristics were collected and, if published, full reports retrieved. Risk factors for early discontinuation for slow recruitment and nonpublication were explored using multivariable logistic regression analyses. RESULTS: In total, 863 RCT protocols involving adult patients were identified, 127 in surgery (15%) and 736 in medicine (85%). Surgical trials were discontinued for any reason more often than medical trials [43% vs 27%, risk difference 16% (95% confidence interval [CI]: 5%-26%); P = 0.001] and more often discontinued for slow recruitment [18% vs 11%, risk difference 8% (95% CI: 0.1%-16%); P = 0.020]. The percentage of trials not published as full journal article was similar in surgical and medical trials (44% vs 40%, risk difference 4% (95% CI: -5% to 14%); P = 0.373). Discontinuation of surgical trials was a strong risk factor for nonpublication (odds ratio = 4.18, 95% CI: 1.45-12.06; P = 0.008). CONCLUSIONS: Discontinuation and nonpublication rates were substantial in surgical RCTs and trial discontinuation was strongly associated with nonpublication. These findings need to be taken into account when interpreting surgical literature. Surgical trialists should consider feasibility studies before embarking on full-scale trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative studies of the conditions and consequences of religious diversity are based mostly on indices that measure the variety of religious membership in a particular region. However, this line of research has become stagnant, and the question of whether diversity affects religious vitality remains unanswered. This article attempts to shed new light on the discussion by measuring religious diversity differently and capturing religious vitality independently of membership figures. In particular, it contrasts the Herfindahl-Hirschman Index based on membership proportions with a second measure of diversity: an index of organizational diversity. Conversely, the dependent variable religious vitality is measured not by using rates of participation in religious organizations but via the Centrality of Religion Scale. Based on ecological and individual level data of forty-three local regions in Finland, Germany, and Slovenia and using multilevel analysis, our results suggest that religious diversity is related to religious vitality. However, the nature of this association differs across subgroups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a series of experiments which were conducted among native speakers of German to determine the influence of different types of German generics on the cognitive inclusion of women. Results indicate that the inclusion of women is higher with ‘non-sexist’ alternatives than with masculine generics, a tendency which was consistent across different studies. The different alternatives, however, showed different effects which also varied depending on the context. These results are discussed with regard to their practical consequences in situations such as nominating women and men for awards or political offices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linkage disequilibrium (LD) is defined as the nonrandom association of alleles at two or more loci in a population and may be a useful tool in a diverse array of applications including disease gene mapping, elucidating the demographic history of populations, and testing hypotheses of human evolution. However, the successful application of LD-based approaches to pertinent genetic questions is hampered by a lack of understanding about the forces that mediate the genome-wide distribution of LD within and between human populations. Delineating the genomic patterns of LD is a complex task that will require interdisciplinary research that transcends traditional scientific boundaries. The research presented in this dissertation is predicated upon the need for interdisciplinary studies and both theoretical and experimental projects were pursued. In the theoretical studies, I have investigated the effect of genotyping errors and SNP identification strategies on estimates of LD. The primary importance of these two chapters is that they provide important insights and guidance for the design of future empirical LD studies. Furthermore, I analyzed the allele frequency distribution of 26,530 single nucleotide polymorphisms (SNPs) in three populations and generated the first-generation natural selection map of the human genome, which will be an important resource for explaining and understanding genomic patterns of LD. Finally, in the experimental study, I describe a novel and simple, low-cost, and high-throughput SNP genotyping method. The theoretical analyses and experimental tools developed in this dissertation will facilitate a more complete understanding of patterns of LD in human populations. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With hundreds of single nucleotide polymorphisms (SNPs) in a candidate gene and millions of SNPs across the genome, selecting an informative subset of SNPs to maximize the ability to detect genotype-phenotype association is of great interest and importance. In addition, with a large number of SNPs, analytic methods are needed that allow investigators to control the false positive rate resulting from large numbers of SNP genotype-phenotype analyses. This dissertation uses simulated data to explore methods for selecting SNPs for genotype-phenotype association studies. I examined the pattern of linkage disequilibrium (LD) across a candidate gene region and used this pattern to aid in localizing a disease-influencing mutation. The results indicate that the r2 measure of linkage disequilibrium is preferred over the common D′ measure for use in genotype-phenotype association studies. Using step-wise linear regression, the best predictor of the quantitative trait was not usually the single functional mutation. Rather it was a SNP that was in high linkage disequilibrium with the functional mutation. Next, I compared three strategies for selecting SNPs for application to phenotype association studies: based on measures of linkage disequilibrium, based on a measure of haplotype diversity, and random selection. The results demonstrate that SNPs selected based on maximum haplotype diversity are more informative and yield higher power than randomly selected SNPs or SNPs selected based on low pair-wise LD. The data also indicate that for genes with small contribution to the phenotype, it is more prudent for investigators to increase their sample size than to continuously increase the number of SNPs in order to improve statistical power. When typing large numbers of SNPs, researchers are faced with the challenge of utilizing an appropriate statistical method that controls the type I error rate while maintaining adequate power. We show that an empirical genotype based multi-locus global test that uses permutation testing to investigate the null distribution of the maximum test statistic maintains a desired overall type I error rate while not overly sacrificing statistical power. The results also show that when the penetrance model is simple the multi-locus global test does as well or better than the haplotype analysis. However, for more complex models, haplotype analyses offer advantages. The results of this dissertation will be of utility to human geneticists designing large-scale multi-locus genotype-phenotype association studies. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linkage and association studies are major analytical tools to search for susceptibility genes for complex diseases. With the availability of large collection of single nucleotide polymorphisms (SNPs) and the rapid progresses for high throughput genotyping technologies, together with the ambitious goals of the International HapMap Project, genetic markers covering the whole genome will be available for genome-wide linkage and association studies. In order not to inflate the type I error rate in performing genome-wide linkage and association studies, multiple adjustment for the significant level for each independent linkage and/or association test is required, and this has led to the suggestion of genome-wide significant cut-off as low as 5 × 10 −7. Almost no linkage and/or association study can meet such a stringent threshold by the standard statistical methods. Developing new statistics with high power is urgently needed to tackle this problem. This dissertation proposes and explores a class of novel test statistics that can be used in both population-based and family-based genetic data by employing a completely new strategy, which uses nonlinear transformation of the sample means to construct test statistics for linkage and association studies. Extensive simulation studies are used to illustrate the properties of the nonlinear test statistics. Power calculations are performed using both analytical and empirical methods. Finally, real data sets are analyzed with the nonlinear test statistics. Results show that the nonlinear test statistics have correct type I error rates, and most of the studied nonlinear test statistics have higher power than the standard chi-square test. This dissertation introduces a new idea to design novel test statistics with high power and might open new ways to mapping susceptibility genes for complex diseases. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interim clinical trial monitoring procedures were motivated by ethical and economic considerations. Classical Brownian motion (Bm) techniques for statistical monitoring of clinical trials were widely used. Conditional power argument and α-spending function based boundary crossing probabilities are popular statistical hypothesis testing procedures under the assumption of Brownian motion. However, it is not rare that the assumptions of Brownian motion are only partially met for trial data. Therefore, I used a more generalized form of stochastic process, called fractional Brownian motion (fBm), to model the test statistics. Fractional Brownian motion does not hold Markov property and future observations depend not only on the present observations but also on the past ones. In this dissertation, we simulated a wide range of fBm data, e.g., H = 0.5 (that is, classical Bm) vs. 0.5< H <1, with treatment effects vs. without treatment effects. Then the performance of conditional power and boundary-crossing based interim analyses were compared by assuming that the data follow Bm or fBm. Our simulation study suggested that the conditional power or boundaries under fBm assumptions are generally higher than those under Bm assumptions when H > 0.5 and also matches better with the empirical results. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the biomedical studies, the general data structures have been the matched (paired) and unmatched designs. Recently, many researchers are interested in Meta-Analysis to obtain a better understanding from several clinical data of a medical treatment. The hybrid design, which is combined two data structures, may create the fundamental question for statistical methods and the challenges for statistical inferences. The applied methods are depending on the underlying distribution. If the outcomes are normally distributed, we would use the classic paired and two independent sample T-tests on the matched and unmatched cases. If not, we can apply Wilcoxon signed rank and rank sum test on each case. ^ To assess an overall treatment effect on a hybrid design, we can apply the inverse variance weight method used in Meta-Analysis. On the nonparametric case, we can use a test statistic which is combined on two Wilcoxon test statistics. However, these two test statistics are not in same scale. We propose the Hybrid Test Statistic based on the Hodges-Lehmann estimates of the treatment effects, which are medians in the same scale.^ To compare the proposed method, we use the classic meta-analysis T-test statistic on the combined the estimates of the treatment effects from two T-test statistics. Theoretically, the efficiency of two unbiased estimators of a parameter is the ratio of their variances. With the concept of Asymptotic Relative Efficiency (ARE) developed by Pitman, we show ARE of the hybrid test statistic relative to classic meta-analysis T-test statistic using the Hodges-Lemann estimators associated with two test statistics.^ From several simulation studies, we calculate the empirical type I error rate and power of the test statistics. The proposed statistic would provide effective tool to evaluate and understand the treatment effect in various public health studies as well as clinical trials.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mistreatment and self-neglect significantly increase the risk of dying in older adults. It is estimated that 1 to 2 million older adults experience elder mistreatment and self-neglect every year in the United States. Currently, there are no elder mistreatment and self-neglect assessment tools with construct validity and measurement invariance testing and no studies have sought to identify underlying latent classes of elder self-neglect that may have differential mortality rates. Using data from 11,280 adults with Texas APS substantiated elder mistreatment and self-neglect 3 studies were conducted to: (1) test the construct validity and (2) the measurement invariance across gender and ethnicity of the Texas Adult Protective Services (APS) Client Assessment and Risk Evaluation (CARE) tool and (3) identify latent classes associated with elder self-neglect. Study 1 confirmed the construct validity of the CARE tool following adjustments to the initial hypothesized CARE tool. This resulted in the deletion of 14 assessment items and a final assessment with 5 original factors and 43 items. Cross-validation for this model was achieved. Study 2 provided empirical evidence for factor loading and item-threshold invariance of the CARE tool across gender and between African-Americans and Caucasians. The financial status domain of the CARE tool did not function properly for Hispanics and thus, had to be deleted. Subsequent analyses showed factor loading and item-threshold invariance across all 3 ethnic groups with the exception of some residual errors. Study 3 identified 4-latent classes associated with elder self-neglect behaviors which included individuals with evidence of problems in the areas of (1) their environment, (2) physical and medical status, (3) multiple domains and (4) finances. Overall, these studies provide evidence supporting the use of APS CARE tool for providing unbiased and valid investigations of mistreatment and neglect in older adults with different demographic characteristics. Furthermore, the findings support the underlying notion that elder self-neglect may not only occur along a continuum, but that differential types may exist. All of which, have very important potential implications for social and health services distributed to vulnerable mistreated and neglected older adults.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.