980 resultados para Electron spin resonance


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resonance electron capture mass spectrometry, in which an additional information coordinate, the energy of electron capture, is applied, has a high sensitivity and a high specificity. It is extensively used to study the structure elucidation, the mechanism of ion formation and the detection, identification and quantification of organic substances in mixture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use R-matrix theory with time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number M_L=0 and M_L=1 at a laser wavelength of 390 nm and peak intensity of 10(14) W/cm(2). Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for M_L. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with M_L=0, the dynamics with respect to time delay of an ionizing probe pulse modeled by using RMT theory is found to be in good agreement with available experimental data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a erpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Sagnac effect is an important phase coherent effect in optical and atom interferometers where rotations of the interferometer with respect to an inertial reference frame result in a shift in the interference pattern proportional to the rotation rate. Here, we analyze the Sagnac effect in a mesoscopic semiconductor electron interferometer. We include in our analysis the Rashba spin-orbit interactions in the ring. Our results indicate that spin-orbit interactions increase the rotation-induced phase shift. We discuss the potential experimental observability of the Sagnac phase shift in such mesoscopic systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use the Ogg-McCombe Hamiltonian together with the Dresselhaus and Rashba spin-splitting terms to find the g factor of conduction electrons in GaAs-(Ga,Al)As semiconductor quantum wells (QWS) (either symmetric or asymmetric) under a magnetic field applied along the growth direction. The combined effects of non-parabolicity, anisotropy and spin-splitting terms are taken into account. Theoretical results are given as functions of the QW width and compared with available experimental data and previous theoretical works. © 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Results are presented from a search for a narrow, spin-2 resonance decaying into a pair of Z bosons, with one Z-boson decaying into leptons (e+e- or μ+μ-) and the other into jets. An example of such a resonance is the Kaluza-Klein graviton, GKK, predicted in Randall-Sundrum models. The analysis is based on a 4.9 fb-1 sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. Kinematic and topological properties including decay angular distributions are used to discriminate between signal and background. No evidence for a resonance is observed, and upper limits on the production cross sections times branching fractions are set. In two models that predict Z-boson spin correlations in graviton decays, graviton masses are excluded lower than a value which varies between 610 and 945 GeV, depending on the model and the strength of the graviton couplings. © 2012 CERN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this conference we report cross sections for elastic collisions of low-energy electrons with the HCOOH…(H2O)n complexes, with n = 1, 2 and 3. The scattering cross sections were computed with the Schwinger multichannel method [K. Takatsuka and V. McKoy, Phys. Rev. A 24 , 2473 (1981); Phys. Rev. A 30 , 1734 (1984)] with pseudopotentials [M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993)] in the static-exchange and static-exchange plus polarization approximations, for energies from 0.5 eV to 6 eV. We considered some diÆerent hydrogen-bonded structures for the complexes that were generated with classical Monte Carlo simulations [K. Coutinho and S. Canuto, J. Chem. Phys. 113, 9132, (2000)]. The aim of this work is to investigate the effect of the surrounding water molecules on the π* shape resonance of the solute. Previous theoretical and experimental studies carried out in the gas phase reported a π* state for HCOOH at around 1.9 eV. For the n = 1 case and for all complexes, the stabilization of the resonance was observed (it appears at lower energy compared to the value obtained in the gas phase), as reported previously for the CH2O…H2O complexes [T. C. Freitas, M. A. P. Lima, S. Canuto, and M. H. F. Bettega, Phys. Rev. A 80, 062710 (2009)]. This result indicates that the presence of the solvent may affect the processes related to the π* state, such as the molecular dissociation by electron impact. For the n = 2 case we have observed both stabilization and destabilization of the π* resonance, that is associated with the hydrogen bond donor or acceptor role of the water molecules in the complexes. For the n = 3 case, preliminary static-exchange results show the stabilization of the π* state. We propose an explanation of the stabilization/destabilization of the π* state in terms of the polarization of the solute due to the surrounding water molecules and the net charge in the solute.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.