752 resultados para Electrochemically polymerized


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report we have investigated the use of Ni foam substrates as anode current collectors for Li-ion batteries. As the majority of reports in the literature focus on hydrothermal formation of materials on Ni foam followed by a high temperature anneal/oxidation step, we probed the fundamental electrochemical responses of as received Ni foam substrates and those subjected to heating at 100°C, 300°C and 450°C. Through cyclic voltammetry and galvanostatic testing, it is shown that the as received and 100°C annealed Ni foam show negligible electrochemical activity. However, Ni foams heated to higher temperature showed substantial electrochemical contributions which may lead to inflated capacities and incorrect interpretations of CV responses for samples subjected to high temperature anneals. XRD, XPS and SEM analyses clearly illustrate that the formation of electrochemically active NiO nanoparticles on the surface of the foam is responsible for this behavior. To further investigate the contribution of the oxidized Ni foam to the overall electrochemical response, we formed Co3O4 nanoflowers directly on Ni foam at 450°C and showed that the resulting electrochemical response was dominated by NiO after the first 10 charge/discharge cycles. This report highlights the importance of assessing current collector activity for active materials grown on transition metal foam current collectors for Li-ion applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ring opening metathesis polymerization (ROMP) is a variant of olefin metathesis used to polymerize strained cyclic olefins. Ruthenium-based Grubbs’ catalysts are widely used in ROMP to produce industrially important products. While highly efficient in organic solvents such as dichloromethane and toluene, these hydrophobic catalysts are not typically applied in aqueous systems. With the advancements in emulsion and miniemulsion polymerization, it is promising to conduct ROMP in an aqueous dispersed phase to generate well-defined latex nanoparticles while improving heat transfer and reducing the use of volatile organic solvents (VOCs). Herein I report the efforts made using a PEGylated ruthenium alkylidene as the catalyst to initiate ROMP in an oil-in-water miniemulsion. 1H NMR revealed that the synthesized PEGylated catalyst was stable and reactive in water. Using 1,5-cyclooctadiene (COD) as monomer, we showed the highly efficient catalyst yielded colloidally stable polymer latexes with ~ 100% conversion at room temperature. Kinetic studies demonstrated first-order kinetics with good livingness as confirmed by the shift of gel permeation chromatography (GPC) traces. Depending on the surfactants used, the particle sizes ranged from 100 to 300 nm with monomodal distributions. The more strained cyclic olefin norbornene (NB) could also be efficiently polymerized with a PEGylated ruthenium alkylidene in miniemulsion to full conversion and with minimal coagulum formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method to fabricate chemically linked conducting polymer–biopolymer composites that are intrinsically flexible and conducting for functional electrode applications is presented. Polypyrrole was synthesised in situ during the cellulose regeneration process using the 1-butyl-3-methylimidazolium chloride ionic liquid as a solvent medium. The obtained polypyrrole–cellulose composite was chemically blended and showed flexible polymer properties while retaining the electronic properties of a conducting polymer. Addition of an ionic liquid such as trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, enhanced the flexibility of the composite. The functional application of these materials in the electrochemically controlled release of a model drug has been demonstrated. This strategy opens up a new design for a wide spectrum of materials for smart electronic device applications wherein the functionality of doping and de-doping of conducting polymers is retained and their processability issue is addressed by exploiting an ionic liquid route.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chemically Modified Electrodes (CME) are widely used in electroanalytical chemistry as chemical sensors. The interest in the covalent anchoring of a redox mediator on the electrode surface is increasing, because it allows the sensibility and the selectivity of this kind of systems to improve. My work is situated in this field of research and involves the synthesis of new Iron(0) complexes that contain cyclopentadienone, N-heterocyclic carbene (NHC) and carbonyl ancillary ligands. These complexes have shown electrochemical properties similar to those of ferrocene (organometallic compound widely used as electrochemical sensor). These complexes have been properly functionalized with a EDOT group in the NHC ligand side chain that it was after used for the realization of Electrochemically Modified PEDOT thanks to copolymerization reaction between the functionalized complex and the EDOT in different amounts. All the synthetic steps were assisted by suitable characterizations (NMR, IR, ESI-MS, cyclic voltammetry and X-ray for the monomeric compound as imidazolium salt and NHC functionalized complexes; cyclic voltammetry, IR e SEM for the copolymers). The properties of the polymer as a selective sensor was preliminarily investigated for dopamine and 2-propanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 degrees C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g(-1) at 1 A g(-1) and presenting long-term cycling stability. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’isomérisation alcaline du lactose en lactulose a été effectuée électro-chimiquement à l’aide d’un réacteur d’électro-activation en combinaison avec des résines échangeuses d’anions de polystyrène de trois types; à savoir Lewatit VP-OC-1065 faible-acide, Lewatit MP-64 moyenne-acide et Lewatit Monoplus M500 forte-acide. Les paramètres opératoires qui ont fait l’objet de cette étude ont été étudiés sur trois blocs expérimentaux pour optimiser le système. Dans le Premier bloc, les paramètres étudiés sont : (1) ratio lactose-5%(p/v) : résine échangeuse d’anions (1:0.5, 1:1 et 1:2), (2) intensité du champ électrique : 50 mA, 100 mA et 200 mA et (3) type de résines : faible, moyenne et forte. Dans le Deuxième bloc, les paramètres mis à l’étude comprenaient : (1) l’intensité du champ électrique : 300 mA, 450 mA et 550 mA, (2) le débit de la solution traitée : 25 ml / min, 50 ml/ min et 100 ml/min et (3) la surface active de la membrane adjacente au compartiment cathodique : 0.78 cm2, 7.06 cm2 et 18.1 cm2. Le Troisième bloc expérimental a été effectué sur la base de la distance entre la membrane et l’électrode : 3.1 cm, 5.6 cm et 9 cm. Le même modèle expérimental a était également réalisé avec du perméat du lactosérum d’une concentration de 7% (p/v). Les résultats obtenus ont révélé que le meilleur rendement de l’isomérisation du lactose en lactulose était obtenu après 30 minutes d’électroactivation en utilisant une solution modèle de lactose-5% avec une valeur d’environ 20.1%. Les conditions opératoires qui ont permis d’avoir ce taux de conversion sont une intensité du courant de 550 mA, un débit de la solution de 25 ml/min, une surface active de la membrane de 7.06 cm2 et une distance de 9 cm entre la cathode et la membrane qui lui y est adjacente. En utilisant le perméat de lactosérum-7%, un taux de conversion de lactose en lactulose de 8.34% a était obtenu avec une intensité du courant de 200 mA, un débit de 120 ml/min, une surface active de de 18.1cm2 et une distance de 9 cm entre la membrane et l’électrode dans le compartiment cathodique. Les analyses de variance ont indiqué un effet catalytique significatif du type de la résine. En effet, la résine-forte a permis d’avoir les plus hauts rendements de la réaction d’isomérisation par électro-activation. La résistance électrique globale du système d’électroactivation dépendait de la valeur de l’intensité du courant. Le produit final était d’une grande pureté, car il ne présentait que quelques traces de galactose (< 4%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A micro gas sensor has been developed by our group for the detection of organo-phosphate vapors using an aqueous oxime solution. The analyte diffuses from the high flow rate gas stream through a porous membrane to the low flow rate aqueous phase. It reacts with the oxime PBO (1-Phenyl-1,2,3,-butanetrione 2-oxime) to produce cyanide ions, which are then detected electrochemically from the change in solution potential. Previous work on this oxime based electrochemistry indicated that the optimal buffer pH for the aqueous solution was approximately 10. A basic environment is needed for the oxime anion to form and the detection reaction to take place. At this specific pH, the potential response of the sensor to an analyte (such as acetic anhydride) is maximized. However, sensor response slowly decreases as the aqueous oxime solution ages, by as much as 80% in first 24 hours. The decrease in sensor response is due to cyanide which is produced during the oxime degradation process, as evidenced by the cyanide selective electrode. Solid phase micro-extraction carried out on the oxime solution found several other possible degradation products, including acetic acid, N-hydroxy benzamide, benzoic acid, benzoyl cyanide, 1-Phenyl 1,3-butadione, 2-isonitrosoacetophenone and an imine derived from the oxime. It was concluded that degradation occurred through nucleophilic attack by a hydroxide or oxime anion to produce cyanide, as well as a nitrogen atom rearrangement similar to Beckmann rearrangement. The stability of the oxime in organic solvents is most likely due to the lack of water, and specifically hydroxide ions. The reaction between oxime and organo-phosphate to produce cyanide ions requires hydroxide ions, and therefore pure organic solvents are not compatible with the current micro-sensor electrochemistry. By combining a concentrated organic oxime solution with the basic aqueous buffer just prior to being used in the detection process, oxime degradation can be avoided while preserving the original electrochemical detection scheme. Based on beaker cell experiments with selective cyanide sensitive electrodes, ethanol was chosen as the best organic solvent due to its stabilizing effect on the oxime, minimal interference with the aqueous electrochemistry, and compatibility with the current microsensor material (PMMA). Further studies showed that ethanol had a small effect on micro-sensor performance by reducing the rate of cyanide production and decreasing the overall response time. To avoid incomplete mixing of the aqueous and organic solutions, they were pre-mixed externally at a 10:1 ratio, respectively. To adapt the microsensor design to allow for mixing to take place within the device, a small serpentine channel component was fabricated with the same dimensions and material as the original sensor. This allowed for seamless integration of the microsensor with the serpentine mixing channel. Mixing in the serpentine microchannel takes place via diffusion. Both detector potential response and diffusional mixing improve with increased liquid residence time, and thus decreased liquid flowrate. Micromixer performance was studies at a 10:1 aqueous buffer to organic solution flow rate ratio, for a total rate of 5.5 μL/min. It was found that the sensor response utilizing the integrated micromixer was nearly identical to the response when the solutions were premixed and fed at the same rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite resins have been subjected to structural modifications aiming at improved optical and mechanical properties. The present study consisted in an in vitro evaluation of the staining behavior of two nanohybrid resins (NH1 and NH2), a nanoparticulated resin (NP) and a microhybrid resin (MH). Samples of these materials were prepared and immersed in commonly ingested drinks, i.e., coffee, red wine and acai berry for periods of time varying from 1 to 60 days. Cylindrical samples of each resin were shaped using a metallic die and polymerized during 30 s both on the bottom and top of its disk. All samples were polished and immersed in the staining solutions. After 24 hours, three samples of each resin immersed in each solution were removed and placed in a spectrofotome ter for analysis. To that end, the samples were previously diluted in HCl at 50%. Tukey tests were carried out in the statistical analysis of the results. The results revealed that there was a clear difference in the staining behavior of each material. The nanoparticulated resin did not show better color stability compared to the microhybrid resin. Moreover, all resins stained with time. The degree of staining decreased in the sequence nanoparticulated, microhybrid, nanohybrid MH2 and MH1. Wine was the most aggressive drink followed by coffee and acai berry. SEM and image analysis revealed significant porosity on the surface of MH resin and relatively large pores on a NP sample. The NH2 resin was characterized by homogeneous dispersion of particles and limited porosity. Finally, the NH1 resin depicted the lowest porosity level. The results revealed that staining is likely related to the concentration of inorganic pa rticles and surface porosity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium-ion batteries provide high energy density while being compact and light-weight and are the most pervasive energy storage technology powering portable electronic devices such as smartphones, laptops, and tablet PCs. Considerable efforts have been made to develop new electrode materials with ever higher capacity, while being able to maintain long cycle life. A key challenge in those efforts has been characterizing and understanding these materials during battery operation. While it is generally accepted that the repeated strain/stress cycles play a role in long-term battery degradation, the detailed mechanisms creating these mechanical effects and the damage they create still remain unclear. Therefore, development of techniques which are capable of capturing in real time the microstructural changes and the associated stress during operation are crucial for unravelling lithium-ion battery degradation mechanisms and further improving lithium-ion battery performance. This dissertation presents the development of two microelectromechanical systems sensor platforms for in situ characterization of stress and microstructural changes in thin film lithium-ion battery electrodes, which can be leveraged as a characterization platform for advancing battery performance. First, a Fabry-Perot microelectromechanical systems sensor based in situ characterization platform is developed which allows simultaneous measurement of microstructural changes using Raman spectroscopy in parallel with qualitative stress changes via optical interferometry. Evolutions in the microstructure creating a Raman shift from 145 cm−1 to 154 cm−1 and stress in the various crystal phases in the LixV2O5 system are observed, including both reversible and irreversible phase transitions. Also, a unique way of controlling electrochemically-driven stress and stress gradient in lithium-ion battery electrodes is demonstrated using the Fabry-Perot microelectromechanical systems sensor integrated with an optical measurement setup. By stacking alternately stressed layers, the average stress in the stacked electrode is greatly reduced by 75% compared to an unmodified electrode. After 2,000 discharge-charge cycles, the stacked electrodes retain only 83% of their maximum capacity while unmodified electrodes retain 91%, illuminating the importance of the stress gradient within the electrode. Second, a buckled membrane microelectromechanical systems sensor is developed to enable in situ characterization of quantitative stress and microstructure evolutions in a V2O5 lithium-ion battery cathode by integrating atomic force microscopy and Raman spectroscopy. Using dual-mode measurements in the voltage range of the voltage range of 2.8V – 3.5V, both the induced stress (~ 40 MPa) and Raman intensity changes due to lithium cycling are observed. Upon lithium insertion, tensile stress in the V2O5 increases gradually until the α- to ε-phase and ε- to δ-phase transitions occur. The Raman intensity change at 148 cm−1 shows that the level of disorder increases during lithium insertion and progressively recovers the V2O5 lattice during lithium extraction. Results are in good agreement with the expected mechanical behavior and disorder change in V2O5, highlighting the potential of microelectromechanical systems as enabling tools for advanced scientific investigations. The work presented here will be eventually utilized for optimization of thin film battery electrode performance by achieving fundamental understanding of how stress and microstructural changes are correlated, which will also provide valuable insight into a battery performance degradation mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poster presented at the 24th Annual Meeting of the Portuguese Dental Association, Lisbon, 12-14 November 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-doped activated carbon fibers have been synthesized by using chemically polymerized aniline as source of nitrogen. Commercial activated carbon fibers (A20) were chemically modified with a thin film of polyaniline (PANI) inside the microporosity of the carbon fibers. The modified activated carbon fibers were carbonized at 600 and 800 °C, respectively. In this way, activated carbon fibers modified with surface nitrogen species were prepared in order to analyze their influence in the performance of electrochemical capacitors in organic electrolyte. Symmetric capacitors were made of activated carbon fibers and N-doped activated carbon fibers and tested in a two-electrode cell configuration, using triethylmethylammonium tetrafluoroborate/propylene carbonate (TEMA-BF4/PC) as electrolyte. The effect of nitrogen species in the degradation or stabilization of the capacitor has been analyzed through floating durability tests using a high voltage charging (3.2 V). The results show higher stabilizing effect in carbonized samples (N-ACF) than in non-carbonized samples and pristine activated carbon fibers, which is attributed to the presence of aromatic nitrogen group, especially positively charged N-functional groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and optimization of electrocatalysts for application in fuel cell systems have been the focus of a variety of studies where core–shell structures have been considered as a promising alternative among the materials studied. We synthesized core–shell nanoparticles of Sn x @Pt y and Rh x @Pt y (Sn@Pt, Sn@Pt2, Sn@Pt3, Rh@Pt, Rh@Pt2, and Rh@Pt3) through a reduction methodology using sodium borohydride. These nanoparticles were electrochemically characterized by cyclic voltammetry and further analyzed by cyclic voltammetry studying their catalytic activity toward glycerol electro-oxidation; chronoamperometry and potentiostatic polarization experiments were also carried out. The physical characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The onset potential for glycerol oxidation was shifted in 130 and 120 mV on the Sn@Pt3/C and Rh@Pt3/C catalysts, respectively, compared to commercial Pt/C, while the stationary pseudo-current density, taken at 600 mV, increased 2-fold and 5-fold for these catalysts related to Pt/C, respectively. Thus, the catalysts synthesized by the developed methodology have enhanced catalytic activity toward the electro-oxidation of glycerol, representing an interesting alternative for fuel cell systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of supported and un-supported Oxygen Evolution Reaction (OER) iridium based electrocatalysts for Polymer Electrolyte Membrane Water Electrolysis (PEMWE) were synthesized using a polyol method. The electrocatalysts and the supports were characterized using a wide range of physical and electrochemical characterization methods. The effect of morphological characteristics of the OER electrocatalyst and the support on the OER activity was studied. The results of this thesis contribute to the existing research to reduce the cost of PEMWE by enhancing the utilization of precious metal for OER electrocatalysis. Iridium electrocatalysts supported on antimony tin oxide (Ir/ATO) were synthesized using the polyol method with two different heating techniques: conventional and microwave-irradiation. It was shown that the physical morphology and electrochemical properties of Ir/ATO synthesized with the two heating methods were comparable. However, the microwave irradiation method was extremely faster than the conventional heating method. Additionally, the effect of heat treatment (calcination temperature) on the morphology and OER activity of Ir/ATO synthesized electrocatalyst with the conventional polyol method. It was found that the iridium electrocatalyst synthesized with the polyol method, consisted of 1-5 nm particles, possessed an amorphous structure, and contained iridium with an average oxidation state of less than +4. Calcining the catalyst at temperatures more than 400 ºC and less than 700ºC: 1) increased the size of the iridium particles to 30 nm, 2) changed the structure of iridium particles from amorphous to crystalline, 3) increased the iridium oxidation state to +4 (IrO2), 4) reduced the electrochemically active surface area by approximately 50%, and 5) reduced the OER activity by approximately 25%; however, it had no significant effect on the physical and chemical morphology of the ATO support. Moreover, potential support metal carbides and oxides including: Tantalum Carbide (TaC), Niobium Oxide (Nb2O5), Niobium Carbide (NbC), Titanium Carbide (TiC), Tungsten Carbide (WC) and Antimony-doped Tin Oxide (ATO, Sb2O5-SnO2), were characterized, and used as support for the iridium OER electrocatalysts. TaC was found to be a promising support, and increasing its surface area by 4% improved the OER performance of the final supported catalyst by approximately 50%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In farbstoffsensibilisierten Solarzellen (DSSC) spielen Chromophore, die als Lichtsammel- und Energie-/Elektronentransfersysteme fungieren, eine zentrale Rolle. Phthalocyanine mit ihren intensiven Absorptionsbanden um 400 nm und 700 nm besitzen großes Potential für die effektive Sensibilisierung von Solarzellen. Trotz ihrer vielversprechenden physikochemischen Eigenschaften und intensiver Bemühungen erreichen Phthalocyanin-sensibilisierte Solarzellen nicht die Effizienzen, die bisher mit anderen Chromophorklassen erzielt werden konnten. In der vorliegenden Dissertation wurde die Entwicklung effizienter Lichtsammelsysteme für DSSC auf der Basis von Aza-substituierten Phthalocyaninen, sogenannten Pyrazinoporphyrazinen, verfolgt. Ein besonderer Fokus lag dabei auf einer Verbesserung der Absorptionseigenschaften der Chromophore im Bereich ihrer intrinsischen Absorptionslücke zwischen den Maxima um 400 nm und 700 nm. Um diese optische Lücke zu schließen wurden komplementär absorbierende BODIPY-Farbstoffe kovalent an synthetisch maßgeschneiderte Porphyrazine gebunden. Insgesamt wurden sechs neue Porphyrazin-Sensibilisatoren synthetisiert und photophysikalisch sowie elektrochemisch charakterisiert. Alle in dieser Arbeit untersuchten Porphyrazine tragen sterisch anspruchsvolle Tri(p-tolyl)propinyl-Gruppen um Agglomerationen zu vermeiden. Darüber hinaus wurden die Porphyrazine peripher entweder mit Hydroxy- oder Carboxygruppen als Bindungsstellen für oxidische Materialien ausgestattet sowie mit sechs BODIPY-Auxiliarfarbstoffen funktionalisiert, deren Substitutionsmuster variiert wurden. Zur Darstellung der komplexen Porphyrazine wurde eine Syntheseroute erarbeitet, die statistische Cyclisierungen unterschiedlicher Dinitril-Vorstufen beinhaltete und es ermöglichte, funktionelle Gruppen erst am vorgeformten Makrocyclus einzuführen. Die photophysikalische Untersuchung der hochfunktionalisierten Farbstoffe erfolgte über UV/Vis- und Fluoreszenzspektroskopie. Im Fall der BODIPY-Porphyrazin-Hybride schließt die zusätzliche Absorptionsbande der peripheren BODIPY-Einheiten die intrinsische Absorptionslücke der Porphyrazine. Die Hybride zeigen somit eine breite Absorption über den gesamten sichtbaren Spektralbereich mit hohen Extinktionskoeffizienten von ca. 4·10^5 M^−1cm^−1. Mittels Fluoreszenz- und Anregungsspektren wurde ein photoinduzierter Energie-transfer von den BODIPY-Einheiten auf den Porphyrazinkern nachgewiesen. Das elektrochemische Verhalten der BODIPY- und Porphyrazin-Verbindungen wurde mittels Cyclo- und Square-Wave-Voltammetrie untersucht. Die Effizienzen der Lichtenergieumwandlung wurden mit Hilfe von selbst-hergestellten und standardisierten farbstoffsensibilisierten Solarzellen bewertet. Alle Solarzellen zeigten eine messbare Photoaktivität unter Bestrahlung. Die Wirkungsgrade der Zellen lagen jedoch alle unter 1 %. Generell führten die Carboxyl-funktionalisierten Porphyrazine zu besseren Wirkungsgraden als die analogen, mit der tripodalen Ankergruppe ausgestatteten Derivate. Die mit Hilfe von Adsorptionsisothermen ermittelten Bindungskonstanten der Adsorption der Farbstoffe auf der TiO2-Oberfläche zeigten, dass beide Hafteinheiten eine feste Verankerung der Chromophore auf den TiO2-Elektroden ermöglichten. Insgesamt wirkte sich die Präsenz der peripheren BODIPY-Farbstoffe positiv auf die Wirkungsgrade der Solarzellen aus, jedoch nur in geringem Maß. Dieses Ergebnis wurde hauptsächlich auf die geringe Energiedifferenz zwischen der Leitungsbandkante des TiO2 und den LUMO-Energieniveaus der Chromophore zurückgeführt. Zusätzlich scheinen konkurrierende Prozesse wie die direkte Photoelektroneninjektion von den BODIPY-Einheiten in das TiO2 eine wichtige Rolle zu spielen. Neben der Anwendung in DSSC wurde die Wechselwirkung der Porphyrazine mit Graphen untersucht. Hierzu wurden A3B-Porphyrazine mit Pyrenyl-Seitenketten ausgestattet, die eine nicht-kovalente Verankerung des Chromophors auf Graphen ermöglichen. UV/Vis- und Fluoreszenzmessungen gaben u.a. erste Hinweise auf eine elektronische Kommunikation zwischen den beiden Hybridpartnern.