949 resultados para Electrochemical treatment. Effluent separator box of water and oil. Oil products
Resumo:
CH4 and CO oxidation reaction on perovskite-like oxides La2-xSrxMO4 (0.01 <= x <= 1.0; M = Cu, Ni) was investigated from cyclic voltammetry method, finding that for suprafacial CO oxidation reaction, the catalyst activity has a close correlation to the area of redox peaks measured in the cyclic voltammetry, the larger the peak area is, the higher the activity will be, while for interfacial CH4 oxidation reaction, the activity depends mainly on the difference in redox potentials (Delta E), and the smaller the difference in redox potentials is, the higher the activity will be.
Resumo:
The transfer of sodium and potassium ions facilitated by dibenzo-15-crown-5 (DB15C5) has been studied at the micro-water/1,2-dichloroethane (water/DCE) interface supported at the tip of a micropipette. Cyclic volt-ammetric measurements were performed in two limiting conditions: the bulk concentration of Na+ or K+ in the aqueous phase is much higher than that of DB15C5 in the organic phase (DB15C5 diffusion controlled process) and the reverse condition (metal ion diffusion controlled process). The mechanisms of the facilitated Na+ transfer by DB15C5 are both transfer by interfacial complexation (TIC) with 1 : 1 stoichiometry under these two conditions, and the corresponding association constants were determined at log beta(1) = 8.97 +/- 0.05 or log beta(1) = 8.63 +/- 0.03. However, the transfers of K+ facilitated by DB15C5 show different behavior. In the former case it is a TIC process and its stoichiometry is 1 : 2, whereas in the latter case two peaks during the forward scan were observed, the first of which was confirmed as the formation of K (DB15C5)(2) at the interface by a TIC mechanism, while the second one may be another TIC process with 1 : 1 stoichiometry in the more positive potential. The relevant association constants calculated for the complexed ion, K+(DB15C5)(2), in the organic phase in two cases, logbeta(2), are 13.64 +/- 0.03 and 11.34 +/- 0.24, respectively.
Resumo:
Multilayer films composed of heteropolyanions (HPAS, SiMo11 VO405-) and cationic polymer poly(diallyldimethylammonium chloride) on 4-aminothiophenol self-assembled-monolayer were fabricated by electrochemical growth. Growth processes of the composite films were characterized by cyclic voltammetry. The results prove the third redox peak of Mo increases more rapidly, otherwise the other Mo redox peaks increase very slowly when the number of layers of heteropolyanions is greater. The peak potentials of composite films shift linearly to negative position with higher pH, which implies that protons are involved in the redox processes of HPA. The investigation of electrocatalytic behaviors of composite films shows a good catalytic activity for the reductions of HNO2 and BrO3-. Catalytic currents increase with increasing number of layers of heteropolyanions, moreover, the catalytic currents have a good linear relationship with the concentrations of BrO3-.
Resumo:
Capillary electrophoresis (CE) with end-column electrochemical detection (EC) of sulfadiazine (SDZ) and sulfamethoxazole (SMZ) is described. Under the optimum conditions, SDZ and SMZ were separated satisfactorily, and a highly sensitive and stable response was obtained at a potential of 1.1 V versus Ag/AgCl. Optimized end-column detection provides detection limits as low as 0.1 mu M for both compounds, which corresponds to 0.024 and 0.021 fmol with peak efficiencies of 394000 and 335000 theoretical plates for SDZ arid SMZ, respectively. The calibration graph was linear over three orders of magnitude. The relative standard deviations (n = 12) of peak currents and migration times were 2.3 and 2.7%, and 0.8 and 1.3%, respectively, for the two compounds. The proposed method was applied to the analysis of tablets and human urine samples with satisfactory results.
Resumo:
In situ electrochemical scanning tunneling microscopy (ECSTM) and an electrochemical quartz crystal microbalance (EQCM) have been employed to follow the adsorption/desorption processes of phenanthraquinone (PQ sat. in 0.1 mol l(-1) HClO4, solution) accompanied with an electrochemical redox reaction on the Au electrode. The result shows that: (1) the reduced form PQH(2) adsorbed at the Au electrode and the desorption occurred when PQH(2) was oxidized to PQ; (2) the adsorption process initiates at steps or kinks which provide high active sites on the electrode surface for adsorption, and as the potential shifts to negative, a multilayer of PQH(2) may be formed at the Au electrode; (3) the reduced PQH(2) adsorbed preferentially in the area where the tip had been scanned continually; this result suggests that the tip induction may accelerate the adsorption of PQH(2) on the Au(111) electrode. Two kinds of possible reason have been discussed; (4) high resolution STM images show the strong substrate lattice information and the weak monolayer adsorbate lattice information simultaneously. The PQH(2) molecules pack into a not perfectly ordered condensed physisorbed layer at potentials of 0.1 and 0.2 V with an average lattice constant a = 11.5 +/- 0.4 Angstrom, b = 11.5 +/- 0.4 Angstrom, and gamma = 120 +/- 2 degrees; the molecular lattice is rotated with respect to the substrate lattice by about 23 +/- 2 degrees. (C) 1997 Elsevier Science S.A.
Resumo:
Gadolinium fullerenols, as novel and potential contrast agents for magnetic resonance imaging, were synthesized, which showed excellent efficiency in enhancing water proton relaxation with a relaxivity of 47.0+/-1.0 mM(-1).s(-1).
Resumo:
The novel polyetherethersulfone (PES-C) prepared from phenol-phthalein in our institute is an amorphous, rigid, tough material with good mechanical properties over a wide temperature range. To improve its water vapor permeability for the application of gas drying, the PES-C was sulfonated with concentrated sulfuric acid and transferred in sodium, cupric, and ferric salt forms. The sulfonation degree can be regulated by controlling the temperature and reaction time. Characterization of sulfonated PES-C in sodium form was made by IR. Some properties of the sulfonated PES-C, such as solubility, glass transition temperature, thermal stability, mechanical properties, and transport properties to nitrogen and water vapor have also been discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The electrochemical behavior of Nd3+ and Ho3+ ions on molybdenum electrode in the LiCl-KCl eutectic melts has been studied by cyclic voltammetry and open-circuit potentiometry. The results show that the reduction process of Nd3+ and Ho3+ ions on molybdenum electrode is one-step three electron reversible reaction. The diffusion coefficients of Nd3+ and Ho3+ ions are 1.13 x 10(-6) cm(2).s(-1)(450 degrees C) and 2.142 x 10(-5) cm(2).s(-1)(450 degrees C), respectively. The measured standard electrode potential of Ho3+/Ho is 2.987 V(vs. Cl/Cl-), being more negative than the theoretical one, the reason of which is also discussed.
Resumo:
In situ electrochemical scanning tunneling microscopy (ECSTM) has been employed to follow the renewal process of a graphite electrode accompanied by flavin adenine dinucleotide (FAD) electrochemical reaction which involves adsorption of the reduced form (FADH(2)) and desorption of the oxidized form (FAD). The renewal process initiates from steps or kinks on the electrode surface, which provide high active sites for adsorption. This renewal depends on the working electrode potential, especially in the range near the FAD redox potential. Our experiment suggests that delamination of the graphite surface is caused by interaction between the substrate and adsorbed molecules. A simple model is proposed to explain this phenomenon.
Resumo:
The variations of unit cell parameters and crystallite size of nine PEEK samples treated at various temperatures have been studied by using Wide-Angle X-ray Diffraction (WAXD), The results indicate a decrease in unit cell parameter a,b and c but an increase in crystallite size L(hkl) With the increase beat treatment temperature. Based on X-ray scattering intensity theory and using the graphic multipeak resolution method, the formula of degree of crystallinity (W-c,W-X) for PEEK is derived. The results calculated are compatible with the density measurement and calorimetry.
Resumo:
Immobilization of protein molecules is a fundamental problem for scanning tunnelling microscopy (STM) measurements with high resolution. In this paper, an electrochemical method has been proved to be an effective way to fix native horseradish peroxidase (HRP) as well as inactivated HRP from electrolyte onto a highly oriented pyrolytic graphite (HOPG) surface. This preparation is suitable for both ex situ and in situ electrochemical STM (ECSTM) measurements. In situ STM has been successfully employed to observe totally different structures of HRP in three typical cases: (1) in situ ECSTM reveals an oval-shaped pattern for a single molecule in neutral buffer solution, which is in good agreement with the dimension determined as 6.2 x 4.3 x 1.2. nm(3) by ex situ STM for native HRP; (2) in situ ECSTM shows that the adsorbed HRP molecules on HOPG in a denatured environment exhibit swelling globes at the beginning and then change into a V-shaped pattern after 30 min; (3) in situ ECSTM reveals a black hole in every ellipsoidal sphere for inactivated HRP in strong alkali solution. The cyclic voltammetry results indicate that the adsorbed native HRP can directly catalyse the reduction of hydrogen peroxide, demonstrating that a direct electron transfer reduction occurred between the enzyme and HOPG electrode, whereas the corresponding cyclic voltammograms for denatured HRP and inactivated HRP adsorbed on HOPG electrodes indicate a lack of ability to catalyse H2O2 reduction, which confirms that the HRP molecules lost their biological activity. Obviously, electrochemical results powerfully support in situ STM observations.
Resumo:
The novel polyetheretherketone (PEK-C) prepared from phenolphthalein in our institute is an amorphous, rigid, tough material with good mechanical properties over a wide temperature range. To improve its water vapor permeability for the application of gas drying, PEK-C was sulfonated with concentrated sulfuric acid and transferred in sodium, cupric, and ferric salt forms. Sulfonation degree can be regulated by controlling the temperature and reaction time. Characterization of sulfonated PEK-C in sodium form was made by infrared spectroscopy. Some properties of the sulfonated PEK-C, such as solubility, glass transition temperature, thermal stability, mechanical properties, and transport properties to nitrogen and water vapor, are also discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
An electrochemical pretreatment regime for a cylindrical carbon fibre microelectrode was optimized for the determination of aminopyrine (AM) and its metabolite 4-aminoantipyrine (AAN) by capillary electrophoresis (CE)-electrochemical detection (ED). Under optimized conditions, a response of high sensitivity and stability was obtained for AM and AAN at a detection voltage as low as 0.9 V following CE-ED, by which AM and AAN were separated satisfactorily. The calibration graph was linear over three orders of magnitude and the limits of detection for AM and AAN were in the femtomole range.
Resumo:
An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.
Resumo:
The electro-oxidation of bilirubin (BR) in aqueous solution was investigated by cyclic voltammetry and in-situ thin-layer spectroelectrochemical techniques, It was found that both oxidation processes of BR are two electron transfer reactions. A mechanism