810 resultados para Electro-optics
Resumo:
This paper presents the trajectory control of a 2DOF mini electro-hydraulic excavator by using fuzzy self tuning with neural network algorithm. First, the mathematical model is derived for the 2DOF mini electro-hydraulic excavator. The fuzzy PID and fuzzy self tuning with neural network are designed for circle trajectory following. Its two links are driven by an electric motor controlled pump system. The experimental results demonstrated that the proposed controllers have better control performance than the conventional controller.
Resumo:
Semiclassical nonlocal optics based on the hydrodynamic description of conduction electrons might be an adequate tool to study complex phenomena in the emerging field of nanoplasmonics. With the aim of confirming this idea, we obtain the local and nonlocal optical absorption spectra in a model nanoplasmonic device in which there are spatial gaps between the components at nanometric and subnanometric scales. After a comparison against time-dependent density functional calculations, we conclude that hydrodynamic nonlocal optics provides absorption spectra exhibiting qualitative agreement but not quantitative accuracy. This lack of accuracy, which is manifest even in the limit where induced electric currents are not established between the constituents of the device, is mainly due to the poor description of induced electron densities.
Resumo:
In situ FTIR spectroscopic and electrochemical data and ex situ (emersion) electron diffraction (LEED) and RHEED) and Auger spectroscopic data are presented on the structure and reactivity, with respect to the electro-oxidation of CO, of the Ru(0001) single-crystal surface in perchloric acid solution. In both the absence and the presence of adsorbed CO, the Ru(0001) electrode shows the potential-dependent formation of well-defined and ordered oxygen-containing adlayers. At low potentials (e.g., from -80 to +200 mV vs Ag/AgCl), a (2 × 2)-O phase, which is unreactive toward CO oxidation, is formed, in agreement with UHV studies. Increasing the potential results in the formation of (3 × 1) and (1 × 1) phases at 410 and 1100 mV, respectively, with a concomitant increase in the reactivity of the surface toward CO oxidation. Both linear (CO ) and three-fold-hollow (CO ) binding CO adsorbates (bands at 2000-2040 and 1770-1800 cm , respectively) were observed on the Ru(0001) electrode. The in situ FTIR data show that the adsorbed CO species remain in compact islands as CO oxidation proceeds, suggesting that the oxidation occurs at the boundaries between the CO and O domains. At low CO coverages, reversible relaxation (at lower potentials) and compression (at higher potentials) of the CO adlayer were observed and rationalized in terms of the reduction and formation of surface O adlayers. The data obtained from the Ru(0001) electrode are in marked contrast to those observed on polycrystalline Ru, where only linear CO is observed.
Resumo:
The adsorption and electro-oxidation of formaldehyde, formic acid and methanol at the Ru(0001) electrode in perchloric acid solution have been studied as a function of temperature, potential and time using in situ FTIR spectroscopy, and the results interpreted in terms of the surface chemistry of the Ru(0001) electrode and compared to those obtained during our previous studies on the adsorption of CO under the same conditions. It was found that no dissociative adsorption or electro-oxidation of methanol takes place at Ru(0001) at potentials 1000 mV, both the oxidation of formic acid to CO and the oxidation of formaldehyde to both CO and formic acid were significantly increased, and the oxidation of methanol to CO and methyl formate was observed, all of which were attributed to the formation of an active RuO phase on the Ru(0001) surface.
Resumo:
The electro-oxidations of methanol and formic acid at a Ru(0001) electrode in perchloric acid solution have been investigated as functions of temperature, potential and time using in-situ FTIR spectroscopy, and the results compared to those obtained during our previous studies on the adsorption and electro-oxidation of CO under the same conditions. It was found that no dissociative adsorption or electro-oxidation of methanol takes place at the Ru(0001) at potentials 1000 mV, the oxidation of formic acid to CO was significantly increased, and the oxidation of methanol to CO and methyl formate was observed, both of which were attributed to the formation of an active RuO phase on the Ru(0001) surface.
Resumo:
The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.
Resumo:
We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si.
Resumo:
Arrays of vertically aligned gold nanotubes are fabricated over several square centimetres which display a geometry tunable plasmonic extinction peak at visible wavelengths and at normal incidence. The fabrication method gives control over nanotube dimensions with inner core diameters of 15–30 nm, wall thicknesses of 5–15 nm and nanotube lengths of up to 300 nm. It is possible to tune the position of the extinction peak through the wavelength range 600–900 nm by varying the inner core diameter and wall thickness. The experimental data are in agreement with numerical modelling of the optical properties which further reveal highly localized and enhanced electric fields around the nanotubes. The tunable nature of the optical response exhibited by such structures could be important for various label-free sensing applications based on both refractive index sensing and surface-enhanced Raman scattering.
Resumo:
In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.
Resumo:
Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring.
Resumo:
We consider the non-equilibrium dynamics of a simple system consisting of interacting spin-1/2 particles subjected to a collective damping. The model is close to situations that can be engineered in hybrid electro/opto-mechanical settings. Making use of large-deviation theory, we find a Gallavotti-Cohen symmetry in the dynamics of the system as well as evidence for the coexistence of two dynamical phases with different activity levels. We show that additional damping processes smooth out this behavior. Our analytical results are backed up by Monte Carlo simulations that reveal the nature of the trajectories contributing to the different dynamical phases.
Resumo:
The preliminary evaluation is described of a new electro-thermal anti-icing/de-icing device for carbon fibre composite aerostructures. The heating element is an electro-conductive carbon-based textile (ECT) by Gorix. Electrical shorting between the structural carbon fibres and the ECT was mitigated by incorporating an insulating layer formed of glass fibre plies or a polymer film. A laboratory-based anti-icing and de-icing test program demonstrated that the film-insulated devices yielded better performance than the glssass fibre insulated ones. The heating capability after impact damage was maintained as long as the ECT fabric was not breached to the extent of causing electrical shorting. A modified structural scarf repair was shown to restore the heating capacity of a damaged specimen.