806 resultados para Electricity customer clustering
Resumo:
The growing energy consumption in the residential sector represents about 30% of global demand. This calls for Demand Side Management solutions propelling change in behaviors of end consumers, with the aim to reduce overall consumption as well as shift it to periods in which demand is lower and where the cost of generating energy is lower. Demand Side Management solutions require detailed knowledge about the patterns of energy consumption. The profile of electricity demand in the residential sector is highly correlated with the time of active occupancy of the dwellings; therefore in this study the occupancy patterns in Spanish properties was determined using the 2009–2010 Time Use Survey (TUS), conducted by the National Statistical Institute of Spain. The survey identifies three peaks in active occupancy, which coincide with morning, noon and evening. This information has been used to input into a stochastic model which generates active occupancy profiles of dwellings, with the aim to simulate domestic electricity consumption. TUS data were also used to identify which appliance-related activities could be considered for Demand Side Management solutions during the three peaks of occupancy.
Resumo:
Academic and industrial literature concerning the energy use of commercial kitchens is scarce. Electricity consumption data were collected from distribution board current transformers in a sample of fourteen UK public house-restaurants. This was set up to identify patterns of appliance use as well as to assess the total energy consumption of these establishments. The electricity consumption in the selected commercial kitchens was significantly higher than current literature estimates. On average, 63% of the premises’ electricity consumption was attributed to the catering activity. Key appliances that contributed to the samples average daily electricity consumption of the kitchen were identified as refrigeration (70 kWh, 41%), fryers (11 kWh, 13%), combination ovens (35 kWh, 12%), bain maries (27 kWh, 9%) and grills (37 kWh, 12%). Behavioural factors and poor maintenance were identified as major contributors to excessive electricity usage with potential savings of 70% and 45% respectively. Initiatives are required to influence operator behaviour, such as the expansion of mandatory energy labelling, improved feedback information and the use of behaviour change campaigns. Strict maintenance protocols and more appropriate sizing of refrigeration would be of great benefit to energy reduction.
Resumo:
This article reports the results of an experiment that examined how demand aggregators can discipline vertically-integrated firms - generator and distributor-retailer holdings-, which have a high share in wholesale electricity market with uniform price double auction (UPDA). We initially develop a treatment where holding members redistribute the profit based on the imposition of supra-competitive prices, in equal proportions (50%-50%). Subsequently, we introduce a vertical disintegration (unbundling) treatment with holding-s information sharing, where profits are distributed according to market outcomes. Finally, a third treatment is performed to introduce two active demand aggregators, with flexible interruptible loads in real time. We found that the introduction of responsive demand aggregators neutralizes the power market and increases market efficiency, even beyond what is achieved through vertical disintegration.
Resumo:
Anchored in the service-dominant logic and service innovation literature, this study investigates the drivers of employee generation of ideas for service improvement (GISI). Employee GISI focuses on customer needs and providing the exact service wanted by customers. GISI should enhance competitive advantage and organizational success (cf. Berry et al. 2006; Wang and Netemeyer 2004). Despite its importance, there is little research on the idea generation stage of the service development process (Chai, Zhang, and Tan 2005). This study contributes to the service field by providing the first empirical evaluation of the drivers of GISI. It also investigates a new explanatory determinant of reading of customer needs, namely, perceived organizational support (POS), and an outcome of POS, in the form of emotional exhaustion. Results show that the major driver of GISI is reading of customer needs by employees followed by affective organizational commitment and job satisfaction. This research provides several new and important insights for service management practice by suggesting that special care should be put into selecting and recruiting employees who have the ability to read customer needs. Additionally, organizations should invest in creating work environments that encourage and reward the flow of ideas for service improvement
Resumo:
Under particular large-scale atmospheric conditions, several windstorms may affect Europe within a short time period. The occurrence of such cyclone families leads to large socioeconomic impacts and cumulative losses. The serial clustering of windstorms is analyzed for the North Atlantic/western Europe. Clustering is quantified as the dispersion (ratio variance/mean) of cyclone passages over a certain area. Dispersion statistics are derived for three reanalysis data sets and a 20-run European Centre Hamburg Version 5 /Max Planck Institute Version–Ocean Model Version 1 global climate model (ECHAM5/MPI-OM1 GCM) ensemble. The dependence of the seriality on cyclone intensity is analyzed. Confirming previous studies, serial clustering is identified in reanalysis data sets primarily on both flanks and downstream regions of the North Atlantic storm track. This pattern is a robust feature in the reanalysis data sets. For the whole area, extreme cyclones cluster more than nonextreme cyclones. The ECHAM5/MPI-OM1 GCM is generally able to reproduce the spatial patterns of clustering under recent climate conditions, but some biases are identified. Under future climate conditions (A1B scenario), the GCM ensemble indicates that serial clustering may decrease over the North Atlantic storm track area and parts of western Europe. This decrease is associated with an extension of the polar jet toward Europe, which implies a tendency to a more regular occurrence of cyclones over parts of the North Atlantic Basin poleward of 50°N and western Europe. An increase of clustering of cyclones is projected south of Newfoundland. The detected shifts imply a change in the risk of occurrence of cumulative events over Europe under future climate conditions.
Resumo:
The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.
Resumo:
Customer Relationship Management (CRM) theory suggests that good customer service results in satisfied customers, who in turn are more likely to remain loyal and recommend the service provider to others. Applied to real estate, this theory implies that landlords should see a return on any investment in the service they give to tenants, in the form of increased lease renewal rates and fewer void periods, achieved without compromising rents. This paper examines determinants of occupier satisfaction, and investigates the relationship between occupier satisfaction and property performance, using measures such as capital growth, income return, lease renewal rates and total return. The analysis is based upon a pilot study using occupier satisfaction responses from around 2500 interviewees based in multi-tenanted offices, shopping centres and retail warehouses on out-of-town retail parks in the UK. The analysis is being extended to cover a larger sample for the author’s PhD. Part 1 of the analysis examines occupier satisfaction, whilst Part 2 considers its impact on property performance.
Resumo:
Global communication requirements and load imbalance of some parallel data mining algorithms are the major obstacles to exploit the computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication cost in iterative parallel data mining algorithms. In particular, the analysis focuses on one of the most influential and popular data mining methods, the k-means algorithm for cluster analysis. The straightforward parallel formulation of the k-means algorithm requires a global reduction operation at each iteration step, which hinders its scalability. This work studies a different parallel formulation of the algorithm where the requirement of global communication can be relaxed while still providing the exact solution of the centralised k-means algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real world distributed applications or can be induced by means of multi-dimensional binary search trees. The approach can also be extended to accommodate an approximation error which allows a further reduction of the communication costs.
Resumo:
Residential electricity demand in most European countries accounts for a major proportion of overall electricity consumption. The timing of residential electricity demand has significant impacts on carbon emissions and system costs. This paper reviews the data and methods used in time use studies in the context of residential electricity demand modelling. It highlights key issues which are likely to become more topical for research on the timing of electricity demand following the roll-out of smart metres.
Resumo:
Nowadays the electricity consumption in the residential sector attracts policy and research efforts, in order to propose saving strategies and to attain a better balance between production and consumption, by integrating renewable energy production and proposing suitable demand side management methods. To achieve these objectives it is essential to have real information about household electricity demand profiles in dwellings, highly correlated, among other aspects, with the active occupancy of the homes and to the personal activities carried out in homes by their occupants. Due to the limited information related to these aspects, in this paper, behavioral factors of the Spanish household residents, related to the electricity consumption, have been determined and analyzed, based on data from the Spanish Time Use Surveys, differentiating among the Autonomous Communities and the size of municipalities, or the type of days, weekdays or weekends. Activities involving a larger number of houses are those related to Personal Care, Food Preparation and Washing Dishes. The activity of greater realization at homes is Watching TV, which together with Using PC, results in a high energy demand in an aggregate level. Results obtained enable identify prospective targets for load control and for efficiency energy reduction recommendations to residential consumers.
Resumo:
Purpose – Today marketers operate in globalised markets, planning new ways to engage with domestic and foreign customers alike. While there is a greater need to understand these two customer groups, few studies examine the impact of customer engagement tactics on the two customer groups, focusing on their perceptual differences. Even less attention is given to customer engagement tactics in a cross-cultural framework. In this research, the authors investigate customers in China and UK, aiming to compare their perceptual differences on the impact of multiple customer engagement tactics. Design/methodology/approach – Using a quantitative approach with 286 usable responses from China and the UK obtained through a combination of person-administered survey and computer-based survey screening process, the authors test a series of hypotheses to distinguish across-cultural differences. Findings – Findings show that the collectivists (Chinese customers) perceive customer engagement tactics differently than the individualists (UK customers). The Chinese customers are more sensitive to price and reputation, whereas the UK customers respond more strongly to service, communication and customisation. Chinese customers’ concerns with extensive price and reputation comparisons may be explained by their awareness towards face (status), increased self-expression and equality. Practical implications – The findings challenge the conventional practice of using similar customer engagement tactics for a specific market place with little concern for multiple cultural backgrounds. The paper proposes strategies for marketers facing challenges in this globalised context. Originality/value – Several contributions have been made to the literatures. First, the study showed the effects of culture on the customers’ perceptual differences. Second, the study provided more information to clarify customers’ different reactions towards customer engagement tactics, highlighted by concerns towards face and status. Third, the study provided empirical evidence to support the use of multiple customer engagement tactics to the across cultural studies.
Resumo:
Higher Education Institutions (HEI) are complex organisations, offering a wide range of services, which involve a multiplicity of customers, stakeholders and service providers; both in terms of type and number. Satisfying a diverse set of customer groups is complex, and requires development of strategic Customer Relationship Management (CRM). This paper contributes to the HEI area, by proposing an approach that scopes CRM strategy, allowing us a better understanding CRM implementation in Higher Education Institutions; maximising alignment of customer and management desires, expectation and needs.
Resumo:
This paper presents a hierarchical clustering method for semantic Web service discovery. This method aims to improve the accuracy and efficiency of the traditional service discovery using vector space model. The Web service is converted into a standard vector format through the Web service description document. With the help of WordNet, a semantic analysis is conducted to reduce the dimension of the term vector and to make semantic expansion to meet the user’s service request. The process and algorithm of hierarchical clustering based semantic Web service discovery is discussed. Validation is carried out on the dataset.
Resumo:
Data on electricity consumption patterns relating to different end uses in domestic houses in Botswana is virtually non-existent, despite the fact that the total electricity consumption patterns are available. This can be attributed to the lack of measured and quantified data and in other instances the lack of modern technology to perform such investigations. This paper presents findings from initial studies that are envisaged to bridge the gap. Electricity consumption patterns of 73 domestic households across three cities have been studied. This was carried out through a questionnaire survey, calculated national metering data and electricity measurements. All together nine appliance groups were identified. The results showed the mean electricity consumption for the households considering the calculated consumption from bills and the survey to be t = 4.23; p < 0.000067, two-tailed. The findings of this paper focus on a relatively small sample size (73). It would therefore not be wise to draw sweeping conclusions from the analysis or to make statements that would be aimed at influencing policies. However, the results presented forms a formidable base for further research, which is currently on going.
Resumo:
Cognitive experiments involving motor execution (ME) and motor imagery (MI) have been intensively studied using functional magnetic resonance imaging (fMRI). However, the functional networks of a multitask paradigm which include ME and MI were not widely explored. In this article, we aimed to investigate the functional networks involved in MI and ME using a method combining the hierarchical clustering analysis (HCA) and the independent component analysis (ICA). Ten right-handed subjects were recruited to participate a multitask experiment with conditions such as visual cue, MI, ME and rest. The results showed that four activation clusters were found including parts of the visual network, ME network, the MI network and parts of the resting state network. Furthermore, the integration among these functional networks was also revealed. The findings further demonstrated that the combined HCA with ICA approach was an effective method to analyze the fMRI data of multitasks.