889 resultados para Electrical power system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hosni Mubarak’s regime and its power system enjoyed remarkable stability for over 30 years. On 11 February 2011, after 18 days of mass protests, the Egyptian president was forced to step down, revealing the unsustainability of the political and economic system that had ensured his continuity for so long. While the revolution of January 25th led to a major success – the fall of Hosni Mubarak – Egypt’s political future is still opaque and exposed to a number of risks. This paper first highlights the factors underpinning the former stability of Mubarak’s regime; it then assesses the causes of its underlying unsustainability, leading to the anti-government popular mobilisation in January-February 2011 and the removal of Mubarak; finally the paper evaluates the prospects for a genuine democratic transition in Egypt, by looking at the main political and socio-economic challenges facing the country.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary. The European electricity sector will have to deal with a huge challenge in the decades to come. On the one hand, electrical power is increasingly substituted for other forms of energy. It has been forecast that electricity demand will increase in the future (notably because of new needs in transport and heat sectors), although it is currently stagnant, mainly because of the economic crisis. Unless a major alternative energy source is discovered, electricity will become the central energy pillar in the long term. On the other hand, electricity production remains uncertain and will depend on numerous factors: the growth of renewable energy and decentralized energy, the renewal of old power generation capacities, increased external dependency, CO2 charges, etc. This increases the demand for electricity networks that are more reliable, more efficient, and more flexible. Europe’s current electricity networks are ageing, and, as already indicated by the International Energy Agency, many of them will need to be modernized or replaced in the decades to come. Finally, the growing impact of energy trading also needs to be taken into account. These considerations explain the need to modernize the electric grid through various ICT means. This modernization alone may allow the grid to become more flexible and interactive, to provide real time feedback, more adaptation to a fluctuating demand, and finally to reduce the global electricity costs. The paper begins with a description of the EU definition of the term ‘smart grid’ (§ 1) and of the body in charge of advising the Commission (§ 2). The EU legal framework applicable to smart grids is also detailed (§ 3). It is a rather complex domain, connected to various regulations. The paper then examines three critical factors in the development of smart grids (and smart meters as a precondition). Standardization is quite complex, but absolutely essential (§ 4). Innovation is not easily put into action (§ 5). Finally, as digital insecurity has worsened dramatically in recent years, the security of electricity networks, and especially their multiplied electronic components, will become increasingly important (§ 6). Lastly, the paper provides a concise overview of the progress of smart grids in the EU in recent years (§ 7). In a nutshell, the conclusion is that progress is quite slow, many obstacles remain, and, given the appearance of many new regulatory problems, it would be useful to organize a review of the present EU strategy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

European Union energy policy calls for nothing less than a profound transformation of the EU's energy system: by 2050 decarbonised electricity generation with 80-95% fewer greenhouse gas emissions, increased use of renewables, more energy efficiency, a functioning energy market and increased security of supply are to be achieved. Different EU policies (e.g., EU climate and energy package for 2020) are intended to create the political and regulatory framework for this transformation. The sectorial dynamics resulting from these EU policies already affect the systems of electricity generation, transportation and storage in Europe, and the more effective the implementation of new measures the more the structure of Europe's power system will change in the years to come. Recent initiatives such as the 2030 climate/energy package and the Energy Union are supposed to keep this dynamic up. Setting new EU targets, however, is not necessarily the same as meeting them. The impact of EU energy policy is likely to have considerable geo-economic implications for individual member states: with increasing market integration come new competitors; coal and gas power plants face new renewable challengers domestically and abroad; and diversification towards new suppliers will result in new trade routes, entry points and infrastructure. Where these implications are at odds with powerful national interests, any member state may point to Article 194, 2 of the Lisbon Treaty and argue that the EU's energy policy agenda interferes with its given right to determine the conditions for exploiting its energy resources, the choice between different energy sources and the general structure of its energy supply. The implementation of new policy initiatives therefore involves intense negotiations to conciliate contradicting interests, something that traditionally has been far from easy to achieve. In areas where this process runs into difficulties, the transfer of sovereignty to the European level is usually to be found amongst the suggested solutions. Pooling sovereignty on a new level, however, does not automatically result in a consensus, i.e., conciliate contradicting interests. Rather than focussing on the right level of decision making, European policy makers need to face the (inconvenient truth of) geo-economical frictions within the Union that make it difficult to come to an arrangement. The reminder of this text explains these latter, more structural and sector-related challenges for European energy policy in more detail, and develops some concrete steps towards a political and regulatory framework necessary to overcome them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon possesses unique electrical and structural properties that make it an ideal material for use in fuel cell construction. In alkaline, phosphoric acid and proton-exchange membrane fuel cells (PEMFCs), carbon is used in fabricating the bipolar plate and the gas-diffusion layer. It can also act as a support for the active metal in the catalyst layer. Various forms of carbon - from graphite and carbon blacks to composite materials - have been chosen for fuel-cell components. The development of carbon nanotubes and the emergence of nanotechnology in recent years has therefore opened up new avenues of matenials development for the low-temperature fuel cells, particularly the hydrogen PEMFC and the direct methanol PEMFC. Carbon nanotubes and aerogels are also being investigated for use as catalyst support, and this could lead to the production of more stable, high activity catalysts, with low platinum loadings (< 0.1 Mg cm(-2)) and therefore low cost. Carbon can also be used as a fuel in high-temperature fuel cells based on solid oxide, alkaline or molten carbonate technology. In the direct carbon fuel cell (DCFC), the energy of combustion of carbon is converted to electrical power with a thermodynamic efficiency close to 100%. The DCFC could therefore help to extend the use of fossil fuels for power generation as society moves towards a more sustainable energy future. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arsenic contamination of groundwater (0.05 to 0.84 mg/L) in Kuitun, Xinjiang was first found in 1970’s. Alternative clean surface water was introduced in 1985. We aimed to assess the exposure and heath outcome since the mitigation. In 2000, we collected a total of 360 urine samples from villagers from the endemic area and a nearby control area for arsenic (As), porphyrins and malondialdehyde (MDA) measurements. The averaged urinary As level of villagers from the endemic site (117±8.3 μg/g creatinine; 4.2 to 943.8 μg/g creat) was higher than that of the control site (73.6±3.2 μg/g creat). No significant differences were found in urinary porphyrins or MDA between the endemic and control sites. However, when the urinary arsenic was higher than 150 μg/g creat, these two biomarkers were higher in the exposed group than the control. Within the exposed group, villagers with arsenic-related skin symptoms had higher arsenic, uroporphyrin and MDA compared to those who had not shown symptoms. Sine the water mitigation, villagers whose urinary arsenic levels were 270 μg/g creat dropped from 20% to 10% of the population. Population with arsenic-related skin symptoms remained unchanged at 31%. We noted that 7.8% of those who had skin lesions were born after the implementation of intervention and that some villagers still prefer to drink the groundwater. Further, in the dry season, lack of surface water and electrical power breakdowns are to blame for failure to ensure continuous supply of clean water. It is concluded that despite the prompt action and successful water mitigation program to curb arsenic poisonings, it is essential to continue to monitor the health outcome of this population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The invention relates to a liquid bio-fuel mixture, and uses thereof in the generation of electrical power, mechanical power and/or heat. The liquid bio-fuel mixture is macroscopically single phase, and comprises a liquid condensate product of biomass fast pyrolysis, a bio-diesel component and an ethanol component.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The simulation of a power system such as the More Electric Aircraft is a complex problem. There are conflicting requirements of the simulation, for example in order to reduce simulation run-times, power ratings that need to be established over long periods of the flight can be calculated using a fairly coarse model, whereas power quality is established over relatively short periods with a detailed model. An important issue is to establish the requirements of the simulation work at an early stage. This paper describes the modelling and simulation strategy adopted for the UK TIMES project, which is looking into the optimisation of the More Electric Aircraft from a system level. Essentially four main requirements of the simulation work have been identified, resulting in four different types of simulation. Each of the simulations is described along with preliminary models and results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the development of large scale power grid interconnections and power markets, research on available transfer capability (ATC) has attracted great attention. The challenges for accurate assessment of ATC originate from the numerous uncertainties in electricity generation, transmission, distribution and utilization sectors. Power system uncertainties can be mainly described as two types: randomness and fuzziness. However, the traditional transmission reliability margin (TRM) approach only considers randomness. Based on credibility theory, this paper firstly built models of generators, transmission lines and loads according to their features of both randomness and fuzziness. Then a random fuzzy simulation is applied, along with a novel method proposed for ATC assessment, in which both randomness and fuzziness are considered. The bootstrap method and multi-core parallel computing technique are introduced to enhance the processing speed. By implementing simulation for the IEEE-30-bus system and a real-life system located in Northwest China, the viability of the models and the proposed method is verified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Taken together, the six nations of Central America count a population of roughly 40 million people and an energy market equal in size to that of Colombia, sufficient to benefit from economies of scale. The region has traditionally been a net importer of hydrocarbons, and hydroelectricity has dominated electric generation. But more recently, thermoelectric generation (diesel and fuel oil) has greatly increased as a percentage of the regional generation market. Progress has been made across the region’s electric sector, beginning with reforms in the 1990s and the 1996 signing of a regional treaty aimed at the development of a regional energy integration project – the Central American Electrical Interconnection System, or SIEPAC. A fundamental SIEPAC goal is to set up a regional electric market and a regulatory system. Indeed, after many years of development, SIEPAC is poised to open a new chapter in Central America’s electric infrastructure and market. But this new era must contend with critical issues such as the need to consolidate the regional electric market, political issues surrounding the venture, and security concerns. Moreover, local conflicts, in different degrees, have become priorities for policymakers, and these are possible barriers to completing the project. The goals of the SIEPAC project and of deepening the broader electric integration process are possible if national and regional decision makers understand that cooperative decision making will produce better results than separate national decision making. Enhanced regional understanding and cooperative decision making, combined with an effort to reorient the terminology and dialogue vis-à-vis energy efficiency in Central America, form the core recommendations of this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of the power monitoring in electrical power systems is to promote the reliablility as well as the quality of electrical power.Therefore, this dissertation proposes a new theory of power based on wavelet transform for real-time estimation of RMS voltages and currents, and some power amounts, such as active power, reactive power, apparent power, and power factor. The appropriate estimation the of RMS and power values is important for many applications, such as: design and analysis of power systems, compensation devices for improving power quality, and instruments for energy measuring. Simulation and experimental results obtained through the proposed MaximalOverlap Discrete Wavelet Transform-based method were compared with the IEEE Standard 1459-2010 and the commercial oscilloscope, respectively, presenting equivalent results. The proposed method presented good performance for compact mother wavelet, which is in accordance with real-time applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aims to evaluate the uncertainty associated with measurements made by aneroid sphygmomanometer, neonatal electronic balance and electrocautery. Therefore, were performing repeatability tests on all devices for the subsequent execution of normality tests using Shapiro-Wilk; identification of influencing factors that affect the measurement result of each measurement; proposition of mathematical models to calculate the measurement uncertainty associated with measuring evaluated for all equipament and calibration for neonatal electronic balance; evaluation of the measurement uncertainty; and development of a computer program in Java language to systematize the calibration uncertainty of estimates and measurement uncertainty. It was proposed and carried out 23 factorial design for aneroid sphygmomanometer order to investigate the effect of temperature factors, patient and operator and another 32 planning for electrocautery, where it investigated the effects of temperature factors and output electrical power. The expanded uncertainty associated with the measurement of blood pressure significantly reduced the extent of the patient classification tracks. In turn, the expanded uncertainty associated with the mass measurement with neonatal balance indicated a variation of about 1% in the dosage of medication to neonates. Analysis of variance (ANOVA) and the Turkey test indicated significant and indirectly proportional effects of temperature factor in cutting power values and clotting indicated by electrocautery and no significant effect of factors investigated for aneroid sphygmomanometer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The penetration of the electric vehicle (EV) has increased rapidly in recent years mainly as a consequence of advances in transport technology and power electronics and in response to global pressure to reduce carbon emissions and limit fossil fuel consumption. It is widely acknowledged that inappropriate provision and dispatch of EV charging can lead to negative impacts on power system infrastructure. This paper considers EV requirements and proposes a module which uses owner participation, through mobile phone apps and on-board diagnostics II (OBD-II), for scheduled vehicle charging. A multi-EV reference and single-EV real-time response (MRS2R) online algorithm is proposed to calculate the maximum and minimum adjustable limits of necessary capacity, which forms part of decision-making support in power system dispatch. The proposed EV dispatch module is evaluated in a case study and the influence of the mobile app, EV dispatch trending and commercial impact is explored.