977 resultados para Electrical impedance tomography
Resumo:
Polycrystalline SrTiO3 films were prepared by pulsed excimer laser ablation on Si and Pt coated Si substrates. Several growth parameters were varied including ablation fluence, pressure, and substrate temperature. The structural studies indicated the presence of [100] and [110] oriented growth after annealing by rapid thermal annealing at 600-degrees-C for 60 s. Deposition at either lower pressures or at higher energy densities encouraged film growth with slightly preferred orientation. The scanning electron microscopy studies showed the absence of any significant particulates on the film surface. Dielectric studies indicated a dielectric constant of 225, a capacitance density of 3.2 fF/mum2, and a charge density of 40 fC/mum for films of 1000 nm thick. The dc conductivity studies on these films suggested a bulk limited space charge conduction in the high field regime, while the low electric fields induced an ohmic conduction. Brief time dependent dielectric breakdown studies on these films, under a field of 250 kV/cm for 2 h, did not exhibit any breakdown, indicating good dielectric strength.
Resumo:
Wave propagation in fluid?filled/submerged tubes is of interest in large HVAC ducts, and also in understanding and interpreting the experimental results obtained from fluid?filled impedance tubes. Based on the closed form analytical solution of the coupled wave equations, an eigenequation, which is the determinant of an 8×8 matrix, is derived and solved to obtain the axial wave number of the lowest?order longitudinal modes for cylindrical ducts of various diameter and wall thickness. The dispersion behavior of the wave motion is analyzed. It is observed that the larger the diameter of the duct and/or the smaller its wall thickness, the more flexible the impedance tube leading to more coupling between the waves in the elastic media. Also, it is shown that the wave motion in water?filled ducts submerged in water exhibits anomalous dispersion behavior. The axial attenuation characteristics of plane waves along water?filled tubes submerged in water or air are also investigated. Finally, investigations on the sound intensity level difference characteristics of the wall of the air?filled tubes are reported.
Resumo:
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic beta-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was < 20 nA cm(-2) at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole-Frenkel. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Electrical resistivity measurements have been carried out on bulk Ge-Te-Se glasses in a Bridgman anvil System. The resistivity of the Ge-Te-Se samples is found to decrease continuously with increasing pressure, with the metallization occurring around 8 GPa. Ge20TexSe80-x glasses (10 less than or equal to x less than or equal to 50) with the mean co-ordination number Z(av) = 2.4 exhibit a plateau in resistivity up to about 4 GPa pressure, followed by a continuous decrease to metallic values. On the other hand, Ge10TexSe90-x glasses (10 less than or equal to x less than or equal to 40) having Z(av) = 2.2, exhibit a smaller plateau (only up to 1 GPa), followed by a decrease in resistivity with pressure. This subtle difference in the high pressure resistivity of Ge-Te-Se glasses with Z(av) < 2.4 and Z(av) greater than or equal to 2.4 can be associated with the changes in the local structure of the chalcogenide glasses with composition.
Resumo:
Computerized tomography is an imaging technique which produces cross sectional map of an object from its line integrals. Image reconstruction algorithms require collection of line integrals covering the whole measurement range. However, in many practical situations part of projection data is inaccurately measured or not measured at all. In such incomplete projection data situations, conventional image reconstruction algorithms like the convolution back projection algorithm (CBP) and the Fourier reconstruction algorithm, assuming the projection data to be complete, produce degraded images. In this paper, a multiresolution multiscale modeling using the wavelet transform coefficients of projections is proposed for projection completion. The missing coefficients are then predicted based on these models at each scale followed by inverse wavelet transform to obtain the estimated projection data.
Resumo:
This work describes the electrical switching behavior of three telluride based amorphous chalcogenide thin film samples, Al-Te, Ge-Se-Te and Ge-Te-Si. These amorphous thin films are made using bulk glassy ingots, prepared by conventional melt quenching technique, using flash evaporation technique; while Al-Te sample has been coated in coplanar electrode geometry, Ge-Se-Te and Ge-Te-Si samples have been deposited with sandwich electrodes. It is observed that all the three samples studied, exhibit memory switching behavior in thin film form, with Ge-Te-Si sample exhibiting a faster switching characteristic. The difference seen in the switching voltages of the three samples studied has been understood on the basis of difference in device geometry and thickness. Scanning electron microscopic image of switched region of a representative Ge15Te81Si4 sample shows a structural change and formation of crystallites in the electrode region, which is responsible for making a conducting channel between the two electrodes during switching.
Resumo:
Improvements in optical and electrical properties were observed after ruthenium passivation of gallium antimonide surfaces. On passivation, luminescence efficiency increased up to 50 times and surface state density reduced by two orders of magnitude. Also, the reverse leakage current was found to decrease by a factor of 30�40 times. Increase in carrier mobility as a result of grain boundary passivation in polycrystalline GaSb was observed. © 1995 American Institute of Physics.
Resumo:
Using steady state and transient capacitance measurements, the electrical characteristics of a defect layer on the surface of bulk GaSb created during the hydrogen plasma treatment is presented. The trap density, activation energies, and the thickness of the defect layer have been calculated. The trap densities are comparable in magnitude to the carrier concentration. The defects introduce multiple energy levels in the band gap. Typical defect layer thicknesses range from a few angstroms to a fraction of a micron. © 1995 American Institute of Physics.
Resumo:
AgI-based composites with a general formula AgI---MxOy (MxOy = ZrO2, CeO2, Fe2O3, Sm2O3, MoO3 and WO3) have been studied in detail. The enhancement in the conductivity of AgI and its unusual thermal stability and amorphization are explained assuming a chemical interaction at the oxide-AgI interface.
Resumo:
We report here an easily reversible set-reset process in a new Ge15Te83Si2 glass that could be a promising candidate for phase change random access memory applications. The I-V characteristics of the studied sample show a comparatively low threshold electric field (E-th) of 7.3 kV/cm. Distinct differences in the type of switching behavior are achieved by means of controlling the on state current. It enables the observation of a threshold type for less than 0.7 mA beyond memory type (set) switching. The set and reset processes have been achieved with a similar magnitude of 1 mA, and with a triangular current pulse for the set process and a short duration rectangular pulse of 10 msec width for the reset operation. Further, a self-resetting effect is seen in this material upon excitation with a saw-tooth/square pulse, and their response of leading and trailing edges are discussed. About 6.5 x 10(4) set-reset cycles have been undertaken without any damage to the device. (C) 2011 American Institute of Physics. doi: 10.1063/1.3574659]
Resumo:
The effect of hydrogen-plasma passivation on the optical and electrical properties of gallium antimonide bulk single crystals is presented. Fundamental changes of the radiative recombination after hydrogenation in undoped, zinc-doped, tellurium-doped, and codoped (with Zn and Te) GaSb are reported. The results of optical measurements indicate that passivation of acceptors is more efficient than that of the donors and, in general, the passivation efficiency depends on the doping level. Passivation of deep nonradiative centers is reflected by the gain of photoluminescence intensity and decrease in deep-level transient spectroscopy peak height. Extended defects like grain boundaries and dislocations have also been found to be passivated. The thermal stability of the passivated deep level and extended defects is higher than that of the shallow level. The kinetics of thermally released hydrogen in the bulk has been studied by reverse-bias annealing experiments.
Resumo:
Transport properties of quasicrystals in rapidly solidified as well as heat-treated Al65CU20Cr15 alloys were studied over a wide temperature range as a function of structure and microstructure. The characterization was done using x-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Particular attention was paid to primitive to face-centered quasicrystalline transformation which occurs on annealing and the effect of microstructures on the transport behavior. The temperature dependence of resistivity is found to depend crucially on the microstructure of the alloy. Further, ordering enhances the negative temperature coefficient of resistivity. The low-temperature (T less than or equal to 25 K) resistivity of Al65Cu20Cr15 has been compared with that of Al63.5Cu24.5Fe12 alloy. In this region p(T) can be well described by a root T contribution arising from electron-electron interaction. We discuss our results in view of current theories.
Resumo:
Hollandite oxides of the type Bi1.7-xPbxV8O16 have been synthesized. The electrical resistivity studies show that the conductivity improves upon Pb substitution. The feasibility of Li intercalation in the system has been established. Magnetic susceptibility studies on the pure and Li intercalated phases show that except for pure Bi1.7V8O16, all phases exhibit Pauli paramagnetism. No superconductivity is encountered down to 12 K in any of the phases. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Two donor acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) have been synthesized for their application in organic devices such as metal-insulator semiconductor (MIS) diodes and field-effect transistors (FETs). The semiconductor-dielectric interface was characterized by capacitance-voltage and conductance-voltage methods. These measurements yield an interface trap density of 4.2 x 10(12) eV(-1) cm(-2) in TDPP-BBT and 3.5 x 10(12) eV(-1) cm(-2) in PDPP-BBT at the flat-band voltage. The FETs based on these spincoated DPP copolymers display p-channel behavior with hole mobilities of the order 10(-3) cm(2)/(V s). Light scattering studies from PDPP-BBT FETs show almost no change in the Raman spectrum after the devices are allowed to operate at a gate voltage, indicating that the FETs suffer minimal damage due to the metal-polymer contact or the application of an electric field. As a comparison Raman intensity profile from the channel-Au contact layer in pentacene FETs are presented, which show a distinct change before and after biasing.
Resumo:
A long-standing and important problem in glass science has been carrier-type reversal (CTR) in semiconducting glasses. This phenomenon is exhibited by Pb-Ge-Se glasses also. It has been addressed here by carrying out detailed electrical, thermal, and spectroscopic investigations. PbxGe42-xSe58 (x = 0-20) glasses were prepared by a two stage melt-quenching process and characterized using x-ray diffraction, high-resolution electron microscropy, and energy dispersive analysis of x-rays. Thermoelectric power and high-pressure electrical resistivity have been measured. IR, Raman, and X-ray adsorption near edge structure spectroscopies have been used for examining the glass structures as well as differential scanning calorimetry (DSC) for studying the thermal properties. A structural model based on the chemical nature of the constituents has been proposed to account for the observed properties of these glasses. Effect of Pb incorporation on local structures and qualitative consequences on the energy band structures of Ge-Se glasses has been considered. The p -->n transition has been attributed to the energetic disposition of the sp(3)d(2) band of Pb atoms, which is located closely above the lone pair band of selenium. This feature makes Pb unique in the context of p -->n transition of chalcogenide glasses. The model can be extended successfully to account for the CTR behavior observed in Bi containing chalcogenide glasses also.