990 resultados para Electric resistance, Spreading.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric current can induce long-range flow of liquid metals over a conducting substrate. This work reports on the effect of the substrate surface roughness on the liquid metal-front velocity during such a flow. Experiments were conducted by passing electric current through liquid gallium placed over similar to 170 nm thick, 500 mu m wide gold and platinum films of varying roughness. The ensuing flow, thus, resembles micro-fluidics behavior in an open-channel. The liquid-front velocity decreased linearly with the substrate surface roughness; this is attributed to the reduction in the effective electric field along the liquid metal-substrate interface with the substrate surface roughness. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790182]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the Fowler-Nordheim field emission (FNFE) from carbon nanotubes on the basis of a newly formulated electron dispersion law by considering the fact that the intense electric field needed for FNFE changes the band structure in a fundamental way. It has been found that the field emitted current increases with increasing electric field in oscillatory manner due to the appearance of van Hove singularities and exhibits spikes for particular values of the electric field where the singularity occurs. The numerical values of the field emitted current in all the cases vary widely and the determined by the chiral indices and the diameter in the respective cases. The results of this paper find three applications in the fields of nanoscience and technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic/Porcelain insulators are widely used in power transmission lines to provide mechanical support for High voltage conductors in addition to withstand electrical stresses. As a result of lightning, switching or temporary over voltages that could initiate flashover under worst weather conditions, and to operate within interference limits. Given that the useful life in service of the individual insulator elements making up the insulator strings is hard to predict, they must be verified periodically to ensure that adequate line reliability is maintained at all times. Over the years utilities have adopted few methods to detect defective discs in a string, subsequently replacement of the faulty discs are being carried out for smooth operation. But, if the insulator is found to be defective in a string at some location that may not create any changes in the field configuration, there is no need to replace to avoid manpower and cost of replacement. Due to deficiency of electric field data for the existing string configuration, utilities are forced to replace the discs which may not be essentially required. Hence, effort is made in the present work to simulate the potential and electric field along the normal and with faults induced discs in a string up to 765 kV system voltages using Surface Charge Simulation Method (SCSM). A comparison is made between simulated results, experimental and field data and it was found that the computed results are quite acceptable and useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traction insulators are solid core insulators widely used for railway electrification. Constant exposure to detrimental effects of vandalism, and mechanical vibrations begets certain faults like shorting of sheds or cracks in the sheds. Due to fault in one/two sheds, stress on the remaining healthy sheds increases, owing to atmospheric pollution the stress may lead to a flashover of the insulator. Presently due to non availability of the electric stress data for the insulators, simulation study is carried out to find the potential and electric field for most widely used traction insulators in the country. The results of potential and electric field stress obtained for normal and faulty imposed insulators are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with line protection challenges experienced in system having substantial wind generation penetration. Two types of WTGU: Doubly Fed (DFIG) and Squirrel Cage (SCIG) Induction Generators are simulated and connected to grid with single circuit transmission line. The paper summarizes analytical investigations carried out on the impedance seen by distance relays by varying fault resistances and grid short circuit MVA, for the protection of such transmission lines during faults. The results are also compared with systems having conventional synchronous machine connected to the grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the development of surface instabilities leading to the generation of multielectron bubbles (MEBs) in superfluid helium upon the application of a pulsed electric field. We found the statistical distribution of the charge of individual instabilities to be strongly dependent on the duration of the electric field pulse. The rate and probability of generation of these instabilities in relation to the temporal characteristics of the applied field was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this brief, we present a physics-based solution for the temperature-dependent electrical resistance of a suspended metallic single-layer graphene (SLG) sheet under Joule self-heating. The effect of in-plane and flexural phonons on the electron scattering rates for a doped SLG layer has been considered, which particularly demonstrates the variation of the electrical resistance with increasing temperature at different current levels using the solution of the self-heating equation. The present solution agrees well with the available experimental data done with back-gate electrostatic method over a wide range of temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Si15Te75Ge10 thin film devices reveal the existence of two distinct, stable low-resistance, SET states, achieved by varying the electrical input to the device. The multiple resistance levels can be attributed to multi-stage crystallization, as observed from temperature dependant resistance studies. The devices are tested for their ability to be RESET with minimal resistance degradation; further, they exhibit a minimal drift in the SET resistance value even after several months of switching. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure-property correlation in the lead-free piezoelectric (1 - x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0 < x <= 0.11), temperature, electric field, and mechanical impact by Raman scattering, ferroelectric, piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc) + rhombohedral (R3c) for the precritical compositions, 0 <= x <= 0.05, (ii) cubiclike for 0.06 <= x <= 0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07 <= x < 0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (similar to 50A degrees) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports the intermittent pulse electric field stimulus mediated in vitro cellular response of L929 mouse fibroblast/SaOS2 osteoblast-like cells on austenitic steel substrates in reference to the field strength dependent behavior. The cellular density and morphometric analyses revealed that the optimal electric (E) fields for the maximum cell density of adhered L929 (similar to 270 % to that of untreated sample) and SaOS2 (similar to 280 % to that of untreated sample) cells are 1 V (0.33 V/cm) and 2 V (0.67 V/cm), respectively. The trend in aspect ratio of elongated SaOS2 cells did not indicate any significant difference among the untreated and treated (up to 3.33 V/cm) cells. The average cell and nucleus areas (for SaOS2 cells) were increased with an increase in the applied voltage up to 8 V (2.67 V/cm) and reduced thereafter. However, the ratio of nucleus to total cell area was increased significantly on the application of higher voltages (2-10 V), indicating the possible influence of E-field on cell growth. Further, the cell density results were compared with earlier results obtained with sintered Hydroxyapatite (HA) and HA-BaTiO3 composites and such comparison revealed that the enhanced cell density on steel sample occurs upon application of much lower field strength and stimulation time. This indicates the possible role of substrate conductivity towards cell growth in pulsed E-field mediated culture conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of s -, p - and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space). Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous thin chalcogenide Si15Te85-xGex films (x: 5, 9, 10, 11, 12) are prepared by flash evaporation and the temperature dependence of resistance of these films has been studied in the temperature range 25-250 degrees C. All the compositions show a linear variation of resistance in this temperature range. Apart from the linear variation, a sharp reduction in resistance at one or at two distinct temperatures (T-TR1/T-TR2) is seen. Thin films annealed at these temperatures, when subjected to X-ray diffraction studies suggest that the dominant crystalline phase at T-TR1 and at T-TR2 is the same and the two dips are associated with varying levels of crystallization. This is also reflected in the atomic force microscopic (AFM) study. Further, the resistance of these two phases shows no drift when the films are annealed for varying lengths of time (10 min to 120 min) suggesting the stability of the phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the mass transport behavior of infinitely extended, continuous, and very thin metallic films under the influence of electric current. Application of direct current of high densities (> 10(8) A/m(2)) results in visible melting of thin film at only one of the electrodes, and the melt then flows towards the other electrode in a circularly symmetric fashion forming a microscale ring pattern. For the two tested thin film systems, namely Cr and Al, of thicknesses ranging from 4 to 20 nm, the above directional flow consistently occurred from cathode to anode and anode to cathode, respectively. Furthermore, application of alternating electric current results in flow of the liquid material from both the electrodes. The dependence of critical flow behavior parameters, such as flow direction, flow velocity, and evolution of the ring diameter, are experimentally determined. Analytical models based on the principles of electromigration in liquid-phase materials are developed to explain the experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The horizontal pullout capacity of a group of two vertical strip anchors placed along the same vertical plane in sand has been determined by using the upper bound finite elements limit analysis. The variation of the efficiency factor (xi (gamma) ) with changes in clear spacing (S) between the anchors has been established to evaluate the total group failure load for different values of (i) embedment ratio (H/B), (ii) soil internal friction angle (phi), and (iii) anchor-soil interface friction angle (delta). The total group failure load, for a given H/B, becomes always maximum corresponding to a certain optimal spacing (S-opt). The value of S-opt/B was found to lie in a range of 0.5-1.4. The maximum magnitude of xi (gamma) increases generally with increases in H/B, phi and delta.