947 resultados para Ecology. Seasonality. Seira. Soil Fauna. Springtails. Taxonomy
Resumo:
As a large, isolated and relatively ancient landmass, New Zealand occupies a unique place in the biological world, with distinctive terrestrial biota and a high proportion of primitive endemic forms. Biology Aotearoa covers the origins, evolution and conservation of the New Zealand flora, fauna and fungi. Each chapter is written by specialists in the field, often working from different perspectives to build up a comprehensive picture. Topics include: the geological history of our land origins, and evolution of our plants, animals and fungi current status of rare and threatened species past, present and future management of native species the effect of human immigration on the native biota.
Resumo:
Industrial control systems (ICS) have been moving from dedicated communications to switched and routed corporate networks, making it probable that these devices are being exposed to the Internet. Many ICS have been designed with poor or little security features, making them vulnerable to potential attack. Recently, several tools have been developed that can scan the internet, including ZMap, Masscan and Shodan. However, little in-depth analysis has been done to compare these Internet-wide scanning techniques, and few Internet-wide scans have been conducted targeting ICS and protocols. In this paper we present a Taxonomy of Internet-wide scanning with a comparison of three popular network scanning tools, and a framework for conducting Internet-wide scans.
Resumo:
The worldwide installed base of enterprise resource planning (ERP) systems has increased rapidly over the past 10 years now comprising tens of thousands of installations in large- and medium-sized organizations and millions of licensed users. Similar to traditional information systems (IS), ERP systems must be maintained and upgraded. It is therefore not surprising that ERP maintenance activities have become the largest budget provision in the IS departments of many ERP-using organizations. Yet, there has been limited study of ERP maintenance activities. Are they simply instances of traditional software maintenance activities to which traditional software maintenance research findings can be generalized? Or are they fundamentally different, such that new research, specific to ERP maintenance, is required to help alleviate the ERP maintenance burden? This paper reports a case study of a large organization that implemented ERP (an SAP system) more than three years ago. From the case study and data collected, we observe the following distinctions of ERP maintenance: (1) the ERP-using organization, in addition to addressing internally originated change-requests, also implements maintenance introduced by the vendor; (2) requests for user-support concerning the ERP system behavior, function and training constitute a main part of ERP maintenance activity; and (3) similar to the in-house software environment, enhancement is the major maintenance activity in the ERP environment, encompassing almost 64% of the total change-request effort. In light of these and other findings, we ultimately: (1) propose a clear and precise definition of ERP maintenance; (2) conclude that ERP maintenance cannot be sufficiently described by existing software maintenance taxonomies; and (3) propose a benefits-oriented taxonomy, that better represents ERP maintenance activities. Three salient dimensions (for characterizing requests) incorporated in the proposed ERP maintenance taxonomy are: (1) who is the maintenance source? (2) why is it important to service the request? and (3) what––whether there is any impact of implementing the request on the installed module(s)?
Resumo:
This study aimed to quantify the intensity of physical activity (PA) of children during school recess (RE), compare the AF gender and seasonal influences. The sample consisted of 30 girls (11.2 ± 1.3 years) and 20 boys (11.3 ± 0.8 years). Heart rate was monitored for three consecutive REs in winter (INV) and spring (PRI) with intensity of the activity being classified as low, moderate and vigorous. Descriptive statistics were used for general data, t test for independent samples for differences between the sexes, paired t test for seasonality. Differences were found between INV and PRI temperatures. Girls had a significant reduction in the AF INV to PRI, which was not observed among boys. The RE represented a small contribution to daily recommendations of AF.
Resumo:
This study investigated the diarrhoea seasonality and its potential drivers as well as potential opportunities for future diarrhoea control and prevention in China. Data on weekly infectious diarrhoea cases in 31 provinces of China from 2005 to 2012, and data on demographic and geographic characteristics, as well as climatic factors, were complied. A cosinor function combined with a Poisson regression was used to calculate the three seasonal parameters of diarrhoea in different provinces. Regression tree analysis was used to identify the predictors of diarrhoea seasonality. Diarrhoea cases in China showed a bimodal distribution. Diarrhoea in children <5 years was more likely to peak in fall-winter seasons, while diarrhoea in persons > = 5 years peaked in summer. Latitude was significantly associated with spatial pattern of diarrhoea seasonality, with peak and trough times occurring earlier at high latitudes (northern areas), and later at low latitudes (southern areas). The annual amplitudes of diarrhoea in persons > = 5 years increased with latitude (r = 0.62, P<0.001). Latitude 27.8° N and 38.65° N were the latitudinal thresholds for diarrhoea seasonality in China. Regional-specific diarrhoea control and prevention strategies may be optimal for China. More attention should be paid to diarrhoea in children <5 years during fall-winter seasons.
Resumo:
An evolving meditation upon the complex, periodic processes that mark Australia’s seasonality, and our increasing ability to disturb them. By amplifying and shining light upon a myriad of mysterious lives lived in blackness, the work presents a sensuous, deep engagement with the rich, irregular spectras of seasonal forms: whilst hinting at a far less comforting background increasingly framed by anthropogenic climate change. ’Temporal’ uses custom interactive systems, illusionary techniques and real time spatial audio processes that draw upon a rich array of media, including seasonal, nocturnal field recordings sourced in the Bundaberg region and detailed observations of foliage & flowering phases from that region. By drawing inspiration from the subtle transitions between what Europeans once named ‘Summer’ and ‘Autumn’ and the multiple seasons recognised by other cultures, whilst also including bodily disturbances within the work, ’Temporal’ creates a compellingly immersive environment that wraps audiences in luscious yet ominous atmospheres beyond sight and hearing. This work completes a two year long project of dynamic mediated installations that have been presented in Sydney, Beijing, Cairns and Bundanon, that have each been somehow choreographed by environmental cycles; alluding to a new framework for making works that we named ‘Seasonal’. These powerful, responsive & experiential works each draw attention to that which will disappear when biodiverse worlds have descended into an era of permanent darkness – an ‘extinction of human experience’. By tapping into the deeply interlocking seasonal cycles of environments that are themselves intimately linked with social, geographical & political concerns, participating audiences are therefore challenged to see the night, their locality & ecologies in new ways through extending their personal limits of perception, imagery & comprehension.
Resumo:
Semantic perception and object labeling are key requirements for robots interacting with objects on a higher level. Symbolic annotation of objects allows the usage of planning algorithms for object interaction, for instance in a typical fetchand-carry scenario. In current research, perception is usually based on 3D scene reconstruction and geometric model matching, where trained features are matched with a 3D sample point cloud. In this work we propose a semantic perception method which is based on spatio-semantic features. These features are defined in a natural, symbolic way, such as geometry and spatial relation. In contrast to point-based model matching methods, a spatial ontology is used where objects are rather described how they "look like", similar to how a human would described unknown objects to another person. A fuzzy based reasoning approach matches perceivable features with a spatial ontology of the objects. The approach provides a method which is able to deal with senor noise and occlusions. Another advantage is that no training phase is needed in order to learn object features. The use-case of the proposed method is the detection of soil sample containers in an outdoor environment which have to be collected by a mobile robot. The approach is verified using real world experiments.
Resumo:
One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.
Resumo:
Fluctuations in transit ridership pattern over the year have always concerned transport planners, operators and researchers. Predominantly, metrological elements have been specified to explain variability in ridership volume. However, the outcome of this research points to new direction to explain ridership fluctuation in Brisbane. It explored the relationship between daily bus ridership, seasonality and weather variables for a one-year period, 2012. Rather than segregating the entire year’s ridership into the four calendar seasons (summer, autumn, spring, and winter), this analysis distributed the yearly ridership into nine complex seasonality blocks. These represent calendar season, school/university (academic) period and their corresponding holidays, as well as other observant holidays such as Christmas. The dominance of complex seasonality over typical calendar season was established through analysis and using Multiple Linear Regression (MLR). This research identified a very strong association between complex seasonality and bus ridership. Furthermore, an expectation that Brisbane’s subtropical summer is unfavourable to transit usage was not supported by the findings of this study. A nil association of precipitation and temperature was observed in this region. Finally, this research developed a ridership estimation model, capable of predicting daily ridership within very limited error range. Following the application of this developed model, the estimated annual time series data of each suburb was analysed using Fourier Transformation to appreciate whether any cyclical effects remained, compared with the original data.
Resumo:
Management of sodic soils under irrigation often requires application of chemical ameliorants to improve permeability combined with leaching of excess salts. Modeling irrigation, soil treatments, and leaching in these sodic soils requires a model that can adequately represent the physical and chemical changes in the soil associated with the amelioration process. While there are a number of models that simulate reactive solute transport, UNSATCHEM and HYDRUS-1D are currently the only models that also include an ability to simulate the impacts of soil chemistry on hydraulic conductivity. Previous researchers have successfully applied these models to simulate amelioration experiments on a sodic loam soil. To further gauge their applicability, we extended the previous work by comparing HYDRUS simulations of sodic soil amelioration with the results from recently published laboratory experiments on a more reactive, repacked sodic clay soil. The general trends observed in the laboratory experiments were able to be simulated using HYDRUS. Differences between measured and simulated results were attributed to the limited flexibility of the function that represents chemistry-dependent hydraulic conductivity in HYDRUS. While improvements in the function could be made, the present work indicates that HYDRUS-UNSATCHEM captures the key changes in soil hydraulic properties that occur during sodic clay soil amelioration and thus extends the findings of previous researchers studying sodic loams.
Resumo:
Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.